A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

Overview

A PyTorch Reproduction of HCN

Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu, IJCAI 2018.

Arxiv Preprint

Features

1. Dataset

  • NTU RGB+D: Cross View (CV), Cross Subject (CS)
  • SBU Kinect Interaction
  • PKU-MMD

2. Tasks

  • Action recognition
  • Action detection

3. Visualization

  • Visdom supported.

Prerequisites

Our code is based on Python3.5. There are a few dependencies to run the code in the following:

  • Python >= 3.5
  • PyTorch == 0.4.0
  • torchnet
  • Visdom
  • Other version info about some Python packages can be found in requirements.txt

Usage

Data preparation

NTU RGB+D

To transform raw NTU RGB+D data into numpy array (memmap format ) by this command:

python ./feeder/ntu_gendata.py --data_path <path for raw skeleton dataset> --out_folder <path for new dataset>
Other Datasets

Not supported now.

Training

Before you start the training, you have to launch visdom server.

python -m visdom

To train the model, you should note that:

  • --dataset_dir is the parents path for all the datasets,
  • --num the number of experiments trials (type: list).
python main.py --dataset_dir <parents path for all the datasets> --mode train --model_name HCN --dataset_name NTU-RGB-D-CV --num 01

To run a new trial with different parameters, you need to:

  • Firstly, run the above training command with a new trial number, e.g, --num 03, thus you will got an error.
  • Secondly, copy a parameters file from the ./HCN/experiments/NTU-RGB-D-CV/HCN01/params.json to the path of your new trial "./HCN/experiments/NTU-RGB-D-CV/HCN03/params.json" and modify it as you want.
  • At last, run the above training command again, it will works.

Testing

python main.py --dataset_dir <parents path for all the datasets> --mode test --load True --model_name HCN --dataset_name NTU-RGB-D-CV --num 01

Load and Training

You also can load a half trained model, and start training it from a specific checkpoint by the following command:

python main.py --dataset_dir <parents path for all the datasets> --mode load_train --load True --model_name HCN --dataset_name NTU-RGB-D-CV --num 01 --load_model <path for  trained model>

Results

Table

The expected Top-1 accuracy of the model for NTU-RGD+D are shown here (There is an accuracy gap. I am not the author of original HCN paper, the repo was reproduced according to the paper text and have not been tuned carefully):

Model Normalized
Sequence
Length
FC
Neuron
Numbers
NTU RGB+D
Cross Subject (%)
NTU RGB+D
Cross View (%)
HCN[1] 32 256 86.5 91.1
HCN 32 256 84.2 89.2
HCN 64 512 84.9* 90.9*

[1] http://arxiv.org/pdf/1804.06055.pdf

Figures

  • Loss & accuracy[CV]

Confusion matrix

- Loss & accuracy[CS]

Reference

[1] Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu. Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. IJCAI 2018.

[2] yysijie/st-gcn: referred for some code of dataset processing.

Owner
Guyue Hu
Guyue Hu
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022