From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

Related tags

Deep LearningSESNet
Overview

SESNet for remote sensing image change detection

It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection". Here, we provide the pytorch implementation of this paper.

Prerequisites

  • windows or Linux
  • PyTorch-1.4.0
  • Python 3.6
  • CPU or NVIDIA GPU

Training

You can run a demo to start training.

python train.py

The network with the highest F1 score in the validation set will be saved in the folder tmp.

testing

You can run a demo to start testing.

python test.py

The F1_score, precision, recall, IoU and OA are displayed in order. Of course, you can slightly modify the code in the test.py file to save the confusion matrix.

Prepare Datasets

download the change detection dataset

SVCD is from the paper CHANGE DETECTION IN REMOTE SENSING IMAGES USING CONDITIONAL ADVERSARIAL NETWORKS, You could download the dataset at https://drive.google.com/file/d/1GX656JqqOyBi_Ef0w65kDGVto-nHrNs9;

LEVIR-CD is from the paper A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection, You could download the dataset at https://justchenhao.github.io/LEVIR/;

Take SVCD as an example, the path list in the downloaded folder is as follows:

├SVCD:
├  ├─train
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─val
├  │  ├─A
├  │  ├─B
├  │  ├─OUT
├  ├─test
├  │  ├─A
├  │  ├─B
├  │  ├─OUT

where A contains images of pre-phase, B contains images of post-phase, and OUT contains label maps.

When using the LEVIR-CD dataset, simply change the folder name from SVCD to LEVIR. The location of the dataset can be set in dataset_dir in the file metadata.json.

cut bitemporal image pairs (LEVIR-CD)

The original image in LEVIR-CD has a size of 1024 * 1024, which will consume too much memory when training. In our paper, we cut the original image into patches of 256 * 256 size without overlapping.

When running our code, please make sure that the file path of the cut image matches ours.

Define hyperparameters

The hyperparameters and dataset paths can be set in the file metadata.json.


"augmentation":  Data Enhancements
"num_gpus":      Number of simultaneous GPUs
"num_workers":   Number of simultaneous processes

"image_chanels": Number of channels of the image (3 for RGB images)
"init_channels": Adjust the overall number of channels in the network, the default is 32
"epochs":        Number of rounds of training
"batch_size":    Number of pictures in the same batch
"learning_rate": Learning Rate
"loss_function": The loss function is specified in the file `./utils/helpers.py`
"bilinear":      Up-sampling method of decoder feature maps, `False` means deconvolution, `True` means bilinear up-sampling

"dataset_dir":   Dataset path, "../SVCD/" means that the dataset `SVCD` is in the same directory as the folder `SESNet`.

A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022