CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

Overview

CoMoGAN: Continuous Model-guided Image-to-Image Translation

Official repository.

Paper

CoMoGAN

CoMoGAN

CoMoGAN: continuous model-guided image-to-image translation [arXiv] | [supp] | [teaser]
Fabio Pizzati, Pietro Cerri, Raoul de Charette
Inria, Vislab Ambarella. CVPR'21 (oral)

If you find our work useful, please cite:

@inproceedings{pizzati2021comogan,
  title={{CoMoGAN}: continuous model-guided image-to-image translation},
  author={Pizzati, Fabio and Cerri, Pietro and de Charette, Raoul},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

Tested with:

  • Python 3.7
  • Pytorch 1.7.1
  • CUDA 11.0
  • Pytorch Lightning 1.1.8
  • waymo_open_dataset 1.3.0

Preparation

The repository contains training and inference code for CoMo-MUNIT training on waymo open dataset. In the paper, we refer to this experiment as Day2Timelapse. All the models have been trained on a 32GB Tesla V100 GPU. We also provide a mixed precision training which should fit smaller GPUs as well (a usual training takes ~9GB).

Environment setup

We advise the creation of a new conda environment including all necessary packages. The repository includes a requirements file. Please create and activate the new environment with

conda env create -f requirements.yml
conda activate comogan

Dataset preparation

First, download the Waymo Open Dataset from the official website. The dataset is organized in .tfrecord files, which we preprocess and split depending on metadata annotations on time of day. Once you downloaded the dataset, you should run the dump_waymo.py script. It will read and unpack the .tfrecord files, also resizing the images for training. Please run

python scripts/dump_waymo.py --load_path path/of/waymo/open/training --save_path /path/of/extracted/training/images
python scripts/dump_waymo.py --load_path path/of/waymo/open/validation --save_path /path/of/extracted/validation/images

Running those commands should result in a similar directory structure:

root
  training
    Day
      seq_code_0_im_code_0.png
      seq_code_0_im_code_1.png
      ...
      seq_code_1_im_code_0.png
      ...
  Dawn/Dusk
      ...
  Night
      ...
  validation
    Day
      ...
    Dawn/Dusk
      ...
    Night
      ...

Pretrained weights

We release a pretrained set of weights to allow reproducibility of our results. The weights are downloadable from here. Once downloaded, unpack the file in the root of the project and test them with the inference notebook.

Training

The training routine of CoMoGAN is mainly based on the CycleGAN codebase, available with details in the official repository.

To launch a default training, run

python train.py --path_data path/to/waymo/training/dir --gpus 0

You can choose on which GPUs to train with the --gpus flag. Multi-GPU is not deeply tested but it should be managed internally by Pytorch Lightning. Typically, a full training requires 13GB+ of GPU memory unless mixed precision is set. If you have a smaller GPU, please run

python train.py --path_data path/to/waymo/training/dir --gpus 0 --mixed_precision

Please note that performances on mixed precision trainings are evaluated only qualitatively.

Experiment organization

In the training routine, an unique ID will be assigned to every training. All experiments will be saved in the logs folder, which is structured in this way:

logs/
  train_ID_0
    tensorboard/default/version_0
      checkpoints
        model_35000.pth
        ...
      hparams.yaml
      tb_log_file
  train_ID_1
    ...

In the checkpoints folder, all the intermediate checkpoints will be stored. hparams.yaml contains all the hyperparameters for a given run. You can launch a tensorboard --logdir train_ID instance on training directories to visualize intermediate outputs and loss functions.

To resume a previously stopped training, running

python train.py --id train_ID --path_data path/to/waymo/training/dir --gpus 0

will load the latest checkpoint from a given train ID checkpoints directory.

Extending the code

Command line arguments

We expose command line arguments to encourage code reusability and adaptability to other datasets or models. Right now, the available options thought for extensions are:

  • --debug: Disables logging and experiment saving. Useful for testing code modifications.
  • --model: Loads a CoMoGAN model. By default, it loads CoMo-MUNIT (code is in networks folder)
  • --data_importer: Loads data from a dataset. By default, it loads waymo for the day2timelapse experiment (code is in data folder).
  • --learning_rate: Modifies learning rate, default value for CoMo-MUNIT is 1e-4.
  • --scheduler_policy: You can choose among linear os step policy, taken respectively from CycleGAN and MUNIT training routines. Default is step.
  • --decay_iters_step: For step policy, how many iterations before reducing learning rate
  • --decay_step_gamma: Regulates how much to reduce the learning rate
  • --seed: Random seed initialization

The codebase have been rewritten almost from scratch after CVPR acceptance and optimized for reproducibility, hence the seed provided could give slightly different results from the ones reported in the paper.

Changing model and dataset requires extending the networks/base_model.py and data/base_dataset.py class, respectively. Please look into CycleGAN repository for further instructions.

Model, dataset and other options

Specific hyperparameters for different models, datasets or options not changing with high frequency are embedded in munch dictionaries in the relative classes. For instance, in networks/comomunit_model.py you can find all customizable options for CoMo-MUNIT. The same is valid for data/day2timelapse_dataset.py. The options folder includes additional options on checkpoint saving intervals and logging.

Inference

Once you trained a model, you can use the infer.ipynb notebook to visualize translation results. After having launched a notebook instance, you will be required to select the train_id of the experiment. The notebook is documented and it provides widgets for sequence, checkpoint and translation selection.

You can also use the translate.py script to translate all the images inside a directory or a sequence of images to another target directory.

python scripts/translate.py --load_path path/to/waymo/validation/day/dir --save_path path/to/saving/dir --phi 3.14

Will load image from the indicated path before translating it to a night style image due to the phi set to 3.14.

  • --phi: (𝜙) is the angle of the sun with a value between [0,2𝜋], which maps to a sun elevation ∈ [+30◦,−40◦]
  • --sequence: if you want to use only certain images, you can specify a name or a keyword contained in the image's name like --sequence segment-10203656353524179475
  • --checkpoint: if your folder logs contains more than one train_ID or if you want to select an older checkpoint, you should indicate the path to the checkpoint contained in the folder with the train_ID that you want like --checkpoint logs/train_ID_0/tensorboard/default/version_0/checkpoints/model_35000.pth

Docker

You will find a Dockerfile based on the nvidia/cuda:11.0.3-base-ubuntu18.04 image with all the dependencies that you need to run and test the code. To build it and to run it :

docker build -t notebook/comogan:1.0 .
docker run -it -v /path/to/your/local/datasets/:/datasets -p 8888:8888 --gpus '"device=0"' notebook/comogan:1.0
  • --gpus: gives you the possibility to only parse the GPU that you want to use, by default, all the available GPUs are parsed.
  • -v: mount the local directory that contained your dataset
  • -p: this option is only used for the infer.ipynb notebook. If you run the notebook on a remote server, you should also use this command to tunnel the output to your computer ssh [email protected] -NL 8888:127.0.0.1:8888
Owner
Codes from Computer Vision group of RITS Team, Inria
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Pytorch Lightning 1.2k Jan 06, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022