PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

Related tags

Deep Learningdro-sfm
Overview

DRO: Deep Recurrent Optimizer for Structure-from-Motion

This is the official PyTorch implementation code for DRO-sfm. For technical details, please refer to:

DRO: Deep Recurrent Optimizer for Structure-from-Motion
Xiaodong Gu*, Weihao Yuan*, Zuozhuo Dai, Chengzhou Tang, Siyu Zhu, Ping Tan
[Paper]

Bibtex

If you find this code useful in your research, please cite:

@article{gu2021dro,
  title={DRO: Deep Recurrent Optimizer for Structure-from-Motion},
  author={Gu, Xiaodong and Yuan, Weihao and Dai, Zuozhuo and Tang, Chengzhou and Zhu, Siyu and Tan, Ping},
  journal={arXiv preprint arXiv:2103.13201},
  year={2021}
}

Contents

  1. Install
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Install

  • We recommend using nvidia-docker2 to have a reproducible environment.
git clone https://github.com/aliyun/dro-sfm.git
cd dro-sfm
sudo make docker-build
sudo make docker-start-interactive

You can also download the built docker directly from dro-sfm-image.tar

docker load < dro-sfm-image.tar
  • If you do not use docker, you could create an environment following the steps in the Dockerfile.
# Environment variables
export PYTORCH_VERSION=1.4.0
export TORCHVISION_VERSION=0.5.0
export NCCL_VERSION=2.4.8-1+cuda10.1
export HOROVOD_VERSION=65de4c961d1e5ad2828f2f6c4329072834f27661
# Install NCCL
sudo apt-get install libnccl2=${NCCL_VERSION} libnccl-dev=${NCCL_VERSION}

# Install Open MPI
mkdir /tmp/openmpi && \
    cd /tmp/openmpi && \
    wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
    tar zxf openmpi-4.0.0.tar.gz && \
    cd openmpi-4.0.0 && \
    ./configure --enable-orterun-prefix-by-default && \
    make -j $(nproc) all && \
    make install && \
    ldconfig && \
    rm -rf /tmp/openmpi

# Install PyTorch
pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION} && ldconfig

# Install horovod (for distributed training)
sudo ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir git+https://github.com/horovod/horovod.git@${HOROVOD_VERSION} && sudo ldconfig

To verify that the environment is setup correctly, you can run a simple overfitting test:

# download a tiny subset of KITTI
cd dro-sfm
curl -s https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/dro-sfm/datasets/KITTI_tiny.tar | tar xv -C /data/datasets/kitti/
# in docker
./run.sh "python scripts/train.py configs/overfit_kitti_mf_gt.yaml" log.txt

Datasets

Datasets are assumed to be downloaded in /data/datasets/ (can be a symbolic link).

KITTI

The KITTI (raw) dataset used in our experiments can be downloaded from the KITTI website. For convenience, you can download data from packnet or here

Tiny KITTI

For simple tests, you can download a "tiny" version of KITTI:

Scannet

The Scannet (raw) dataset used in our experiments can be downloaded from the Scannet website. For convenience, you can download data from here

DeMoN

Download DeMoN.

bash download_traindata.sh
python ./dataset/preparation/preparedata_train.py
bash download_testdata.sh
python ./dataset/preparation/preparedata_test.py

Training

Any training, including fine-tuning, can be done by passing either a .yaml config file or a .ckpt model checkpoint to scripts/train.py:

# kitti, checkpoints will saved in ./results/mdoel/
./run.sh 'python scripts/train.py  configs/train_kitti_mf_gt.yaml' logs/kitti_sup.txt
./run.sh 'python scripts/train.py  configs/train_kitti_mf_selfsup.yaml' logs/kitti_selfsup.txt 

# scannet
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view3.yaml' logs/scannet_sup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_selfsup_view3.yaml' logs/scannet_selfsup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view5.yaml' logs/scannet_sup_view5.txt

# demon
./run.sh 'python scripts/train.py  configs/train_demon_mf_gt.yaml' logs/demon_sup.txt

Evaluation

python scripts/eval.py --checkpoint <checkpoint.ckpt> [--config <config.yaml>]
# example:kitti, results will be saved in results/depth/
python scripts/eval.py --checkpoint ckpt/outdoor_kitti.ckpt --config configs/train_kitti_mf_gt.yaml

You can also directly run inference on a single image or video:

# video or folder
# indoor-scannet 
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type scannet --ply_mode 
 # indoor-general
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type general --ply_mode

# outdoor
python scripts/infer_video.py --checkpoint ckpt/outdoor_kitti.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type kitti --ply_mode 

# image
python scripts/infer.py --checkpoint <checkpoint.ckpt> --input <image or folder> --output <image or folder>

Models

Model Abs.Rel. Sqr.Rel RMSE RMSElog a1 a2 a3 SILog L1_inv rot_ang t_ang t_cm
Kitti_sup 0.045 0.193 2.570 0.080 0.971 0.994 0.998 0.079 0.003 - - -
Kitti_selfsup 0.053 0.346 3.037 0.102 0.962 0.990 0.996 0.101 0.004 - - -
scannet_sup 0.053 0.017 0.165 0.080 0.967 0.994 0.998 0.078 0.033 0.472 9.297 1.160
scannet_sup(view5) 0.047 0.014 0.151 0.072 0.976 0.996 0.999 0.071 0.030 0.456 8.502 1.163
scannet_selfsup 0.143 0.345 0.656 0.274 0.896 0.954 0.969 0.272 0.106 0.609 10.779 1.393

Acknowledgements

Thanks to Toyota Research Institute for opening source of excellent work packnet-sfm. Thanks to Zachary Teed for opening source of his excellent work RAFT.

Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022