A transformer model to predict pathogenic mutations

Overview

MutFormer

MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model with an added adaptive vocabulary to protein context, for the purpose of predicting the effect of missense mutations on protein function.

For this project, a total of 5 models were trained:

Model Name Hidden Layers Hidden Size (and size of convolution filters) Intermediate Size Input length # of parameters Download link
Orig BERT small 8 768 3072 1024 ~58M https://drive.google.com/drive/folders/1dJwSPWOU8VVLwQbe8UlxSLyAiJqCWszn?usp=sharing
Orig BERT medium 10 770 3072 1024 ~72M https://drive.google.com/drive/folders/1--nJNAwCB5weLH8NclNYJsrYDx2DZUhj?usp=sharing
MutFormer small 8 768 3072 1024 ~62M https://drive.google.com/drive/folders/1-LXP5dpO071JYvbxRaG7hD9vbcp0aWmf?usp=sharing
MutFormer medium 10 770 3072 1024 ~76M https://drive.google.com/drive/folders/1-GWOe1uiosBxy5Y5T_3NkDbSrv9CXCwR?usp=sharing
MutFormer large (Same size transformer as BERT-base) 12 768 3072 1024 ~86M https://drive.google.com/drive/folders/1-59X7Wu7OMDB8ddnghT5wvthbmJ9vjo5?usp=sharing

Orig BERT small and Orig BERT medium use the original BERT model for comparison purposes, the MutFormer models the official models.

Best performing MutFormer model for funtional effect prediction:

https://drive.google.com/drive/folders/1tsC0lqzbx3wR_jOer9GuGjeJnnYL4RND?usp=sharing

To download a full prediction of all possible missense proteins in the humane proteome, we have included a file as an asset called "hg19_mutformer.zip" Alternatively, a google drive link: https://drive.google.com/file/d/1ObBEn-wcQwoebD7glx8bWiWILfzfnlIO/view?usp=sharing

To run MutFormer:

Pretraining:

Under the folder titled "MutFormer_pretraining," first open "MutFormer_pretraining_data generation_(with dynamic masking op).ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate eval and test data, as well as begin the constant training data generation with dynamic masking.

Once the data generation has begun, open "MutFormer_run_pretraining.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise) to start the training.

Finally, open "MutFormer_run_pretraining_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

You can make multiple copies of the data generation and run_pretraining scripts to train multiple models at a time. The evaluation script is able to handle evaluating multiple models at once.

To view pretraining graphs or download the checkpoints from GCS, use the notebook titled “MutFormer_processing_and_viewing_pretraining_results.”

Finetuning

For finetuning, there is only one set of files for three modes, so at the top of each notebook there is an option to select the desired mode to use (MRPC for paired strategy, RE for single sequence strategy, and NER for pre residue strategy).

Under the folder titled "MutFormer_finetraining," first open "MutFormer_finetuning_data_generation.ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate train,eval,and test data.

Once the data generation has finished, open "MutFormer_finetuning_benchmark.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise). There are three different options to use: either training multiple models on different sequence lengths, training just one model on multiple sequence lengths with different batch sizes, or training just one single model with specified sequence lengths and specified batch sizes. There are also options for whether to run prediction or evaluation, and which dataset to use.

Finally, alongside running MutFormer_run_finetuning "MutFormer_finetuning_benchmark_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

To view finetuning graphs or plotting ROC curves for the predictions, use the notebook titled “MutFormer_processing_and_viewing_finetuning_pathogenic_variant_classification_(2_class)_results.ipynb.”

Model top performances for Pathogenicity Prediction:

Model Name Receiver Operator Characteristic Area Under Curve (ROC AUC)
Orig BERT small 0.845
Orig BERT medium 0.876
MutFormer small 0.931
MutFormer medium 0.932
MutFormer large 0.933

Input Data format guidelines:

General format:

Each residue in each sequence should be separated by a space, and to denote the actual start and finish of each entire sequence, a "B" should be placed at the start of each sequence and a "J" at the end of the sequence prior to trimming/splitting.

for pretraining, datasets should be split into "train.txt", "eval.txt", and "test.txt" for finetuning, datasets should be split into "train.tsv", "dev.tsv", and "test.tsv"

During finetuning, whenever splitting was required, we placed the mutation at the most center point possible, and the rest was trimmed off.

Pretraining:

We have included our pretraining data in this repository as an asset, called "pretraining_data.zip" Alternatively, a google drive link: https://drive.google.com/drive/folders/1QlTx0iOS8aVKnD0fegkG5JOY6WGH9u_S?usp=sharing

The format should be a txt with each line containing one sequence. Each sequence should be trimmed/split to a maximum of a fixed length (in our case we used 1024 amino acids).

Example file:

B M E T A V I G V V V V L F V V T V A I T C V L C C F S C D S R A Q D P Q G G P G J
B M V S S Y L V H H G Y C A T A T A F A R M T E T P I Q E E Q A S I K N R Q K I Q K 
L V L E G R V G E A I E T T Q R F Y P G L L E H N P N L L F M L K C R Q F V E M V N 
G T D S E V R S L S S R S P K S Q D S Y P G S P S L S F A R V D D Y L H J

Finetuning

Single Sequence Classification (RE)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. label (1 for pathogenic and 0 for benign).

Example file:

V R K T T S P E G E V V P L H Q V D I P M E N G V G G N S I F L V A P L I I Y H V I D A N S P L Y D L A P S D L H H H Q D L    0
P S I P T D I S T L P T R T H I I S S S P S I Q S T E T S S L V V T T S P T M S T V R M T L R I T E N T P I S S F S T S I V    0
G Q F L L P L T Q E A C C V G L E A G I N P T D H L I T A Y R A Q G F T F T R G L S V R E I L A E L T G R K G G C A K G K G    1
P A G L G S A R E T Q A Q A C P Q E G T E A H G A R L G P S I E D K G S G D P F G R Q R L K A E E M D T E D R P E A S G V D    0

Per Residue Classification (NER)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. per residue labels
  3. mutation position (index; if the 5th residue is mutated the mutation position would be 4) ("P" for pathogenic and "B" for benign).

The per residue labels should be the same length as the mutated protein sequence. Every residue is labelled as "B" unless it was a mutation site, in which case it was labelled either "B" or "P." The loss is calculated on only the mutation site.

Example file:

F R E F A F I D M P D A A H G I S S Q D G P L S V L K Q A T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16
A T D L D A E E E V V A G E F G S R S S Q A S R R F G T M S    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
G K K G D V W R L G L L L L S L S Q G Q E C G E Y P V T I P    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
E M C Q K L K F F K D T E I A K I K M E A K K K Y E K E L T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16

Paired Sequence Classification (MRPC)

The format should be a tsv file with each line containing (tab delimited):

  1. label (1 for pathogenic and 0 for benign)
  2. comment/placeholder column
  3. another comment/placeholder column
  4. reference sequence
  5. mutated sequence

Example file:

1    asdf    asdf    D W A Y A A S K E S H A T L V F H N L L G E I D Q Q Y S R F    D W A Y A A S K E S H A T L V F Y N L L G E I D Q Q Y S R F
0    asdf    asdf    S A V P P F S C G V I S T L R S R E E G A V D K S Y C T L L    S A V P P F S C G V I S T L R S W E E G A V D K S Y C T L L
1    asdf    asdf    L L D S S L D P E P T Q S K L V R L E P L T E A E A S E A T    L L D S S L D P E P T Q S K L V H L E P L T E A E A S E A T
0    asdf    asdf    L A E D E A F Q R R R L E E Q A A Q H K A D I E E R L A Q L    L A E D E A F Q R R R L E E Q A T Q H K A D I E E R L A Q L

Citation

If you use MutFormer, please cite the arXiv paper:

Jiang, T., Fang, L. & Wang, K. MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations. Preprint at https://arxiv.org/abs/2110.14746 (2021).

Bibtex format:

@article{jiang2021mutformer,
    title={MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations}, 
    author={Theodore Jiang and Li Fang and Kai Wang},
    journal={arXiv preprint arXiv:2110.14746},
    year={2021}
}
You might also like...
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. The implementation of
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

Unofficial implementation of
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Releases(v1.0.0)
Owner
Wang Genomics Lab
We develop software tools for genome analysis
Wang Genomics Lab
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022