A transformer model to predict pathogenic mutations

Overview

MutFormer

MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model with an added adaptive vocabulary to protein context, for the purpose of predicting the effect of missense mutations on protein function.

For this project, a total of 5 models were trained:

Model Name Hidden Layers Hidden Size (and size of convolution filters) Intermediate Size Input length # of parameters Download link
Orig BERT small 8 768 3072 1024 ~58M https://drive.google.com/drive/folders/1dJwSPWOU8VVLwQbe8UlxSLyAiJqCWszn?usp=sharing
Orig BERT medium 10 770 3072 1024 ~72M https://drive.google.com/drive/folders/1--nJNAwCB5weLH8NclNYJsrYDx2DZUhj?usp=sharing
MutFormer small 8 768 3072 1024 ~62M https://drive.google.com/drive/folders/1-LXP5dpO071JYvbxRaG7hD9vbcp0aWmf?usp=sharing
MutFormer medium 10 770 3072 1024 ~76M https://drive.google.com/drive/folders/1-GWOe1uiosBxy5Y5T_3NkDbSrv9CXCwR?usp=sharing
MutFormer large (Same size transformer as BERT-base) 12 768 3072 1024 ~86M https://drive.google.com/drive/folders/1-59X7Wu7OMDB8ddnghT5wvthbmJ9vjo5?usp=sharing

Orig BERT small and Orig BERT medium use the original BERT model for comparison purposes, the MutFormer models the official models.

Best performing MutFormer model for funtional effect prediction:

https://drive.google.com/drive/folders/1tsC0lqzbx3wR_jOer9GuGjeJnnYL4RND?usp=sharing

To download a full prediction of all possible missense proteins in the humane proteome, we have included a file as an asset called "hg19_mutformer.zip" Alternatively, a google drive link: https://drive.google.com/file/d/1ObBEn-wcQwoebD7glx8bWiWILfzfnlIO/view?usp=sharing

To run MutFormer:

Pretraining:

Under the folder titled "MutFormer_pretraining," first open "MutFormer_pretraining_data generation_(with dynamic masking op).ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate eval and test data, as well as begin the constant training data generation with dynamic masking.

Once the data generation has begun, open "MutFormer_run_pretraining.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise) to start the training.

Finally, open "MutFormer_run_pretraining_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

You can make multiple copies of the data generation and run_pretraining scripts to train multiple models at a time. The evaluation script is able to handle evaluating multiple models at once.

To view pretraining graphs or download the checkpoints from GCS, use the notebook titled “MutFormer_processing_and_viewing_pretraining_results.”

Finetuning

For finetuning, there is only one set of files for three modes, so at the top of each notebook there is an option to select the desired mode to use (MRPC for paired strategy, RE for single sequence strategy, and NER for pre residue strategy).

Under the folder titled "MutFormer_finetraining," first open "MutFormer_finetuning_data_generation.ipynb," and run through the code segments (if using colab, runtime options: Hardware Accelerator-None, Runtime shape-Standard), selecting the desired options along the way, to generate train,eval,and test data.

Once the data generation has finished, open "MutFormer_finetuning_benchmark.ipynb," and in a different runtime, run the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-High RAM if available, Standard otherwise). There are three different options to use: either training multiple models on different sequence lengths, training just one model on multiple sequence lengths with different batch sizes, or training just one single model with specified sequence lengths and specified batch sizes. There are also options for whether to run prediction or evaluation, and which dataset to use.

Finally, alongside running MutFormer_run_finetuning "MutFormer_finetuning_benchmark_eval.ipynb" and run all the code segments there (if using colab, runtime options: Hardware Accelerator-TPU, Runtime shape-Standard) in another runtime to begin the parallel evaluation operation.

To view finetuning graphs or plotting ROC curves for the predictions, use the notebook titled “MutFormer_processing_and_viewing_finetuning_pathogenic_variant_classification_(2_class)_results.ipynb.”

Model top performances for Pathogenicity Prediction:

Model Name Receiver Operator Characteristic Area Under Curve (ROC AUC)
Orig BERT small 0.845
Orig BERT medium 0.876
MutFormer small 0.931
MutFormer medium 0.932
MutFormer large 0.933

Input Data format guidelines:

General format:

Each residue in each sequence should be separated by a space, and to denote the actual start and finish of each entire sequence, a "B" should be placed at the start of each sequence and a "J" at the end of the sequence prior to trimming/splitting.

for pretraining, datasets should be split into "train.txt", "eval.txt", and "test.txt" for finetuning, datasets should be split into "train.tsv", "dev.tsv", and "test.tsv"

During finetuning, whenever splitting was required, we placed the mutation at the most center point possible, and the rest was trimmed off.

Pretraining:

We have included our pretraining data in this repository as an asset, called "pretraining_data.zip" Alternatively, a google drive link: https://drive.google.com/drive/folders/1QlTx0iOS8aVKnD0fegkG5JOY6WGH9u_S?usp=sharing

The format should be a txt with each line containing one sequence. Each sequence should be trimmed/split to a maximum of a fixed length (in our case we used 1024 amino acids).

Example file:

B M E T A V I G V V V V L F V V T V A I T C V L C C F S C D S R A Q D P Q G G P G J
B M V S S Y L V H H G Y C A T A T A F A R M T E T P I Q E E Q A S I K N R Q K I Q K 
L V L E G R V G E A I E T T Q R F Y P G L L E H N P N L L F M L K C R Q F V E M V N 
G T D S E V R S L S S R S P K S Q D S Y P G S P S L S F A R V D D Y L H J

Finetuning

Single Sequence Classification (RE)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. label (1 for pathogenic and 0 for benign).

Example file:

V R K T T S P E G E V V P L H Q V D I P M E N G V G G N S I F L V A P L I I Y H V I D A N S P L Y D L A P S D L H H H Q D L    0
P S I P T D I S T L P T R T H I I S S S P S I Q S T E T S S L V V T T S P T M S T V R M T L R I T E N T P I S S F S T S I V    0
G Q F L L P L T Q E A C C V G L E A G I N P T D H L I T A Y R A Q G F T F T R G L S V R E I L A E L T G R K G G C A K G K G    1
P A G L G S A R E T Q A Q A C P Q E G T E A H G A R L G P S I E D K G S G D P F G R Q R L K A E E M D T E D R P E A S G V D    0

Per Residue Classification (NER)

The format should be a tsv file with each line containing (tab delimited):

  1. mutated protein sequence
  2. per residue labels
  3. mutation position (index; if the 5th residue is mutated the mutation position would be 4) ("P" for pathogenic and "B" for benign).

The per residue labels should be the same length as the mutated protein sequence. Every residue is labelled as "B" unless it was a mutation site, in which case it was labelled either "B" or "P." The loss is calculated on only the mutation site.

Example file:

F R E F A F I D M P D A A H G I S S Q D G P L S V L K Q A T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16
A T D L D A E E E V V A G E F G S R S S Q A S R R F G T M S    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
G K K G D V W R L G L L L L S L S Q G Q E C G E Y P V T I P    B B B B B B B B B B B B B B B P B B B B B B B B B B B B B B    16
E M C Q K L K F F K D T E I A K I K M E A K K K Y E K E L T    B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B    16

Paired Sequence Classification (MRPC)

The format should be a tsv file with each line containing (tab delimited):

  1. label (1 for pathogenic and 0 for benign)
  2. comment/placeholder column
  3. another comment/placeholder column
  4. reference sequence
  5. mutated sequence

Example file:

1    asdf    asdf    D W A Y A A S K E S H A T L V F H N L L G E I D Q Q Y S R F    D W A Y A A S K E S H A T L V F Y N L L G E I D Q Q Y S R F
0    asdf    asdf    S A V P P F S C G V I S T L R S R E E G A V D K S Y C T L L    S A V P P F S C G V I S T L R S W E E G A V D K S Y C T L L
1    asdf    asdf    L L D S S L D P E P T Q S K L V R L E P L T E A E A S E A T    L L D S S L D P E P T Q S K L V H L E P L T E A E A S E A T
0    asdf    asdf    L A E D E A F Q R R R L E E Q A A Q H K A D I E E R L A Q L    L A E D E A F Q R R R L E E Q A T Q H K A D I E E R L A Q L

Citation

If you use MutFormer, please cite the arXiv paper:

Jiang, T., Fang, L. & Wang, K. MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations. Preprint at https://arxiv.org/abs/2110.14746 (2021).

Bibtex format:

@article{jiang2021mutformer,
    title={MutFormer: A context-dependent transformer-based model to predict pathogenic missense mutations}, 
    author={Theodore Jiang and Li Fang and Kai Wang},
    journal={arXiv preprint arXiv:2110.14746},
    year={2021}
}
You might also like...
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. The implementation of
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

Unofficial implementation of
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Releases(v1.0.0)
Owner
Wang Genomics Lab
We develop software tools for genome analysis
Wang Genomics Lab
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022