CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

Overview

TUCH

This repo is part of our project: On Self-Contact and Human Pose.
[Project Page] [Paper] [MPI Project Page]

Teaser SMPLify-XMC

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the TUCH data and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description and Demo

TUCH is a network that regresses human pose and shape, while handling self-contact. The network has the same design as SPIN, but uses new loss terms, that encourage self-contact and resolve intersections.

TUCH result
TUCH fits for two poses with self-contact.

Installation

1) Clone this repo

git clone [email protected]:muelea/tuch.git
cd tuch

32) Create python virtual environment and install requirements

mkdir .venv
python3.6 -m venv .venv/tuch
source .venv/tuch/bin/activate
pip install -r requirements.txt --no-cache-dir

The torchgeometry package uses (1 - bool tensor) statement, which is not supported. Since we try to invert a mask, we can exchange lines 301 - 304 in .venv/tuch/lib/python3.6/site-packages/torchgeometry/core/conversions.py,

FROM: 
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (1 - mask_d0_d1)
    mask_c2 = (1 - mask_d2) * mask_d0_nd1
    mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
TO:
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (~mask_d0_d1)
    mask_c2 = (~mask_d2) * mask_d0_nd1
    mask_c3 = (~mask_d2) * (~mask_d0_nd1)

3) Download the SMPL body model

Get them SMPL body model from https://smpl.is.tue.mpg.de and save it under SMPL_DIR. ln -s SMPL_DIR data/models/smpl

4) Download SPIN and TUCH model

Downlaod the SPIN and TUCH model and save it in data/

chmod 700 scripts/fetch_data.sh
./scripts/fetch_data.sh

5) Download essentials (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

Download essentials from here and unpack to METADATA_DIR. Then create symlinks between the essentials and this repo:

ln -s $METADATA_DIR/tuch-essentials data/essentials

6) Download the MTP and DSC datasets (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

To run TUCH training, please download:

For more information on how to prepare the data read me.

TUCH demo

python demo_tuch.py --checkpoint=data/tuch_model_checkpoint.pt  \
--img data/example_input/img_032.jpg --openpose data/example_input/img_032_keypoints.json \
--outdir data/example_output/demo_tuch

This is the link to the demo image.

SMPLify-DC demo

You can use the following command to run SMPLify-DC on our DSC data, after pre-processing it. See readme for instructions. The output are the initial SPIN estimate (columns 2 and 3) and the SMPLify-DC optimized result (column 4 and 5).

python demo_smplify_dc.py --name smplify_dc --log_dir out/demo_smplify_dc --ds_names dsc_df \
--num_smplify_iters 100

TUCH Training

To select the training data, you can use the --ds_names and --ds_composition flags. ds_names are the short names of each dataset, ds_composition their share per batch. --run_smplify uses DSC annotations when available, otherwise it runs SMPLify-DC without L_D term. If you memory is not sufficient, you can try changing the batch size via the --batch_size flag.

Run TUCH training code:

python train.py --name=tuch --log_dir=out --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names dsc mtp --ds_composition 0.5 0.5 \
  --run_smplify --num_smplify_iters=10

For a quick sanity check (no optimization and contact losses) you can finetune on MTP data only without pushing and pulling terms. For this, use mtp data only and set contact_loss_weight=0.0, and remove the optimization flag:

python train.py --name=tuch_mtp_nolplc --log_dir=out/ --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names mtp --ds_composition 1.0 \
  --contact_loss_weight=0.0 

To train on different data distributions, pass the dsc dataset names to --ds_names and their share per batch in the same order to --ds_composition. For example,
--ds_names dsc mtp --ds_composition 0.5 0.5 uses 50 % dsc and 50% mtp per batch and
--ds_names dsc mtp --ds_composition 0.3 0.7 uses 30 % dsc and 70% mtp per batch.

TUCH Evaluation

python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=mpi-inf-3dhp
python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=3dpw

EFT + Contact Fitting for DSC data

Training with in-the-loop optimization is slow. You can do Exemplar FineTuning (EFT) with Contact. For this, first process the DSC datasets. Then run:

python fit_eft.py --name tucheft --dsname dsc_lsp
python fit_eft.py --name tucheft --dsname dsc_lspet
python fit_eft.py --name tucheft --dsname dsc_df

Afterwards, you can use the eft datasets similar to the DSC data, just add '_eft' to the dataset name: --ds_names dsc_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc eft and 50% mtp per batch. --ds_names dsc_lsp_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc lsp eft and 50% mtp per batch.

Citation

@inproceedings{Mueller:CVPR:2021,
  title = {On Self-Contact and Human Pose},
  author = {M{\"u}ller, Lea and Osman, Ahmed A. A. and Tang, Siyu and Huang, Chun-Hao P. and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recogßnition (CVPR)},
  month = jun,
  year = {2021},
  doi = {},
  month_numeric = {6}
}

Acknowledgement

We thank Nikos Kolotouros and Georgios Pavlakos for publishing the SPIN code: https://github.com/nkolot/SPIN. This has allowed us to build our code on top of it and continue to use important features, such as the prior or optimization. Again, special thanks to Vassilis Choutas for his implementation of the generalized winding numbers and the measurements code. We also thank our data capture and admin team for their help with the extensive data collection on Mechanical Turk and in the Capture Hall. Many thanks to all subjects who contributed to this dataset in the scanner and on the Internet. Thanks to all PS members who proofread the script and did not understand it and the reviewers, who helped improving during the rebuttal. Lea Mueller and Ahmed A. A. Osman thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting them. We thank the wonderful PS department for their questions and support.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Lea Müller
PhD student in the Perceiving Systems Department at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Lea Müller
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022