CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

Overview

TUCH

This repo is part of our project: On Self-Contact and Human Pose.
[Project Page] [Paper] [MPI Project Page]

Teaser SMPLify-XMC

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the TUCH data and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description and Demo

TUCH is a network that regresses human pose and shape, while handling self-contact. The network has the same design as SPIN, but uses new loss terms, that encourage self-contact and resolve intersections.

TUCH result
TUCH fits for two poses with self-contact.

Installation

1) Clone this repo

git clone [email protected]:muelea/tuch.git
cd tuch

32) Create python virtual environment and install requirements

mkdir .venv
python3.6 -m venv .venv/tuch
source .venv/tuch/bin/activate
pip install -r requirements.txt --no-cache-dir

The torchgeometry package uses (1 - bool tensor) statement, which is not supported. Since we try to invert a mask, we can exchange lines 301 - 304 in .venv/tuch/lib/python3.6/site-packages/torchgeometry/core/conversions.py,

FROM: 
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (1 - mask_d0_d1)
    mask_c2 = (1 - mask_d2) * mask_d0_nd1
    mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
TO:
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (~mask_d0_d1)
    mask_c2 = (~mask_d2) * mask_d0_nd1
    mask_c3 = (~mask_d2) * (~mask_d0_nd1)

3) Download the SMPL body model

Get them SMPL body model from https://smpl.is.tue.mpg.de and save it under SMPL_DIR. ln -s SMPL_DIR data/models/smpl

4) Download SPIN and TUCH model

Downlaod the SPIN and TUCH model and save it in data/

chmod 700 scripts/fetch_data.sh
./scripts/fetch_data.sh

5) Download essentials (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

Download essentials from here and unpack to METADATA_DIR. Then create symlinks between the essentials and this repo:

ln -s $METADATA_DIR/tuch-essentials data/essentials

6) Download the MTP and DSC datasets (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

To run TUCH training, please download:

For more information on how to prepare the data read me.

TUCH demo

python demo_tuch.py --checkpoint=data/tuch_model_checkpoint.pt  \
--img data/example_input/img_032.jpg --openpose data/example_input/img_032_keypoints.json \
--outdir data/example_output/demo_tuch

This is the link to the demo image.

SMPLify-DC demo

You can use the following command to run SMPLify-DC on our DSC data, after pre-processing it. See readme for instructions. The output are the initial SPIN estimate (columns 2 and 3) and the SMPLify-DC optimized result (column 4 and 5).

python demo_smplify_dc.py --name smplify_dc --log_dir out/demo_smplify_dc --ds_names dsc_df \
--num_smplify_iters 100

TUCH Training

To select the training data, you can use the --ds_names and --ds_composition flags. ds_names are the short names of each dataset, ds_composition their share per batch. --run_smplify uses DSC annotations when available, otherwise it runs SMPLify-DC without L_D term. If you memory is not sufficient, you can try changing the batch size via the --batch_size flag.

Run TUCH training code:

python train.py --name=tuch --log_dir=out --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names dsc mtp --ds_composition 0.5 0.5 \
  --run_smplify --num_smplify_iters=10

For a quick sanity check (no optimization and contact losses) you can finetune on MTP data only without pushing and pulling terms. For this, use mtp data only and set contact_loss_weight=0.0, and remove the optimization flag:

python train.py --name=tuch_mtp_nolplc --log_dir=out/ --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names mtp --ds_composition 1.0 \
  --contact_loss_weight=0.0 

To train on different data distributions, pass the dsc dataset names to --ds_names and their share per batch in the same order to --ds_composition. For example,
--ds_names dsc mtp --ds_composition 0.5 0.5 uses 50 % dsc and 50% mtp per batch and
--ds_names dsc mtp --ds_composition 0.3 0.7 uses 30 % dsc and 70% mtp per batch.

TUCH Evaluation

python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=mpi-inf-3dhp
python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=3dpw

EFT + Contact Fitting for DSC data

Training with in-the-loop optimization is slow. You can do Exemplar FineTuning (EFT) with Contact. For this, first process the DSC datasets. Then run:

python fit_eft.py --name tucheft --dsname dsc_lsp
python fit_eft.py --name tucheft --dsname dsc_lspet
python fit_eft.py --name tucheft --dsname dsc_df

Afterwards, you can use the eft datasets similar to the DSC data, just add '_eft' to the dataset name: --ds_names dsc_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc eft and 50% mtp per batch. --ds_names dsc_lsp_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc lsp eft and 50% mtp per batch.

Citation

@inproceedings{Mueller:CVPR:2021,
  title = {On Self-Contact and Human Pose},
  author = {M{\"u}ller, Lea and Osman, Ahmed A. A. and Tang, Siyu and Huang, Chun-Hao P. and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recogßnition (CVPR)},
  month = jun,
  year = {2021},
  doi = {},
  month_numeric = {6}
}

Acknowledgement

We thank Nikos Kolotouros and Georgios Pavlakos for publishing the SPIN code: https://github.com/nkolot/SPIN. This has allowed us to build our code on top of it and continue to use important features, such as the prior or optimization. Again, special thanks to Vassilis Choutas for his implementation of the generalized winding numbers and the measurements code. We also thank our data capture and admin team for their help with the extensive data collection on Mechanical Turk and in the Capture Hall. Many thanks to all subjects who contributed to this dataset in the scanner and on the Internet. Thanks to all PS members who proofread the script and did not understand it and the reviewers, who helped improving during the rebuttal. Lea Mueller and Ahmed A. A. Osman thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting them. We thank the wonderful PS department for their questions and support.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Lea Müller
PhD student in the Perceiving Systems Department at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Lea Müller
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022