GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

Overview

If you are using this code in your own project, please cite our paper:

@inproceedings{awiszus2020toadgan,
  title={TOAD-GAN: Coherent Style Level Generation from a Single Example},
  author={Awiszus, Maren and Schubert, Frederik and Rosenhahn, Bodo},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment},
  year={2020}
}

TOAD-GUI

TOAD-GUI is a Framework with which Super Mario Bros. levels can be randomly generated, loaded, saved, edited and played using a graphical user interface. Generation is done with pre-trained TOAD-GAN (Token-based, One-shot, Arbitrary Dimension Generative Adversarial Network). For more information on TOAD-GAN, please refer to the paper (arxiv link) and the Github.

TOAD-GUI_linux_example

This project uses the Mario-AI-Framework by Ahmed Khalifa and includes graphics from the game Super Mario Bros. It is not affiliated with or endorsed by Nintendo. The project was built for research purposes only.

AIIDE 2020

Our paper "TOAD-GAN: Coherent Style Level Generation from a Single Example" was accepted for oral presentation at AIIDE 2020! You can find our video presentation on YouTube.

Our code for TOAD-GUI and TOAD-GAN has been accepted for the AIIDE 2020 Artifact Evaluation Track! It will be recognized in the AIIDE 2020 Program.

Getting Started

This section includes the necessary steps to get TOAD-GUI running on your system.

Python

You will need Python 3 and the packages specified in requirements.txt. We recommend setting up a virtual environment with pip and installing the packages there.

$ pip3 install -r requirements.txt -f "https://download.pytorch.org/whl/torch_stable.html"

Make sure you use the pip3 that belongs to your previously defined virtual environment.

The GUI is made with Tkinter, which from Python 3.7 onwards is installed by default. If you don't have it installed because of an older version, follow the instructions here.

Java

TOAD-GUI uses the Mario-AI-Framework to play the generated levels. For the Framework to run, Java 11 (or higher) needs to be installed.

Running TOAD-GUI

Once all prerequisites are installed, TOAD-GUI can be started by running main.py.

$ python main.py

Make sure you are using the python installation you installed the prerequisites into.

TOAD-GUI

When running TOAD-GUI you can:

  • toad folder Open a Folder containing a Generator (TOAD-GAN)
  • level folder Open a (previously saved) level .txt to view and/or play
  • gear toad Generate a level of the size defined in the entries below
  • save button Save the currently loaded level level to a .txt or .png image file
  • play button Play the currently loaded level

NOTE: When a generator is opened, it will not show any files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

When a level is loaded, right clicking a point in the preview will allow you to change the token at that specific spot. If you resample the level, any changes made will be lost.

The labels at the bottom will display the currently loaded path and information. This program was made mostly by one researcher and is not optimized. Impatiently clicking buttons might crash the program.

Edit Mode

In this mode, parts of a generated level can be resampled with TOAD-GAN. The red bounding box shows the area to be changed, while the yellow bounding box shows which blocks can still be affected by that change. The area of effect depends on the scale which is to be resampled and is a result of the Field of View produced by the convolutional layers. Changes in a lower scale will result in larger changes in the final level.

Use the control panel to set the bounding box. The representation inside the panel shows which pixels in the noise map will be changed.

TOAD-GUI_bbox

Resample the noise map in the chosen scale. The "Noise influence" is a learned parameter that indicates how big the effect of resampling in this scale will be.

TOAD-GUI_sc3

Scale 0 is the first scale and results in the most changes. Note that the tokens outside of the bounding box change. This is because of the field of view from the convolutional layers applied to the noise map.

TOAD-GUI_sc0

You can right click a token you want to change and replace it with another token present in the level. This should be done after resampling, as resampling will regenerate the level from the noise maps which will undo these edits.

TOAD-GUI_edit

TOAD-GAN

If you are interested in training your own Generator, refer to the TOAD-GAN Github and copy the folder of your trained generator into the generators/ folder. You should now be able to open it just like the provided generators.

The necessary files are:

generators.pth
noise_amplitudes.pth
noise_maps.pth
num_layer.pth
reals.pth
token_list.pth

Any other files can be deleted if you want to keep your folders tidy.

NOTE: When a generator is opened, it will not show these files in the dialog window. That is intended behavior for askdirectory() of tkinter. Just navigate to the correct path and click "Open" regardless.

Known Bugs

  • If the level play is quit using the window ('x' button in the corner), an error message regarding py4j will occur. In spite of that, the program should continue running normally.

  • If you have two monitors with different resolutions, the GUI and the Java window might not be displayed in the correct resolution. Try moving the windows to the monitor with the other resolution if you encounter this problem. You can also change the DPI awareness for the program in the beginning of GUI.py.

Built With

  • Tkinter - Python package for building GUIs
  • py4j - Python to Java interface
  • Pillow - Python Image Library for displaying images
  • Pytorch - Deep Learning Framework
  • Maven - Used for building the Mario-AI-Framework

Authors

  • Maren Awiszus - Institut für Informationsverarbeitung, Leibniz University Hanover
  • Frederik Schubert - Institut für Informationsverarbeitung, Leibniz University Hanover

Copyright

This program is not endorsed by Nintendo and is only intended for research purposes. Mario is a Nintendo character which the authors don’t own any rights to. Nintendo is also the sole owner of all the graphical assets in the game.

Owner
Maren A.
Maren A.
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023