Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Overview

Conditional DETR

This repository is an official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Introduction

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

Our conditional DETR learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box (Figure 1). This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7x faster for the backbones R50 and R101 and 10x faster for stronger backbones DC5-R50 and DC5-R101.

Model Zoo

We provide conditional DETR and conditional DETR-DC5 models. AP is computed on COCO 2017 val.

Method Epochs Params (M) FLOPs (G) AP APS APM APL URL
DETR-R50 500 41 86 42.0 20.5 45.8 61.1 model
log
DETR-R50 50 41 86 34.8 13.9 37.3 54.4 model
log
DETR-DC5-R50 500 41 187 43.3 22.5 47.3 61.1 model
log
DETR-R101 500 60 152 43.5 21.0 48.0 61.8 model
log
DETR-R101 50 60 152 36.9 15.5 40.6 55.6 model
log
DETR-DC5-R101 500 60 253 44.9 23.7 49.5 62.3 model
log
Conditional DETR-R50 50 44 90 41.0 20.6 44.3 59.3 model
log
Conditional DETR-DC5-R50 50 44 195 43.7 23.9 47.6 60.1 model
log
Conditional DETR-R101 50 63 156 42.8 21.7 46.6 60.9 model
log
Conditional DETR-DC5-R101 50 63 262 45.0 26.1 48.9 62.8 model
log

Note:

  1. The numbers in the table are slightly differently from the numbers in the paper. We re-ran some experiments when releasing the codes.
  2. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.

Installation

Requirements

  • Python >= 3.7, CUDA >= 10.1
  • PyTorch >= 1.7.0, torchvision >= 0.6.1
  • Cython, COCOAPI, scipy, termcolor

The code is developed using Python 3.8 with PyTorch 1.7.0. First, clone the repository locally:

git clone https://github.com/Atten4Vis/ConditionalDETR.git

Then, install PyTorch and torchvision:

conda install pytorch=1.7.0 torchvision=0.6.1 cudatoolkit=10.1 -c pytorch

Install other requirements:

cd ConditionalDETR
pip install -r requirements.txt

Usage

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
├── annotations/  # annotation json files
└── images/
    ├── train2017/    # train images
    ├── val2017/      # val images
    └── test2017/     # test images

Training

To train conditional DETR-R50 on a single node with 8 gpus for 50 epochs run:

bash scripts/conddetr_r50_epoch50.sh

or

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --resume auto \
    --coco_path /path/to/coco \
    --output_dir output/conddetr_r50_epoch50

The training process takes around 30 hours on a single machine with 8 V100 cards.

Same as DETR training setting, we train conditional DETR with AdamW setting learning rate in the transformer to 1e-4 and 1e-5 in the backbone. Horizontal flips, scales and crops are used for augmentation. Images are rescaled to have min size 800 and max size 1333. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 0.1.

Evaluation

To evaluate conditional DETR-R50 on COCO val with 8 GPUs run:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --batch_size 2 \
    --eval \
    --resume <checkpoint.pth> \
    --coco_path /path/to/coco \
    --output_dir output/<output_path>

Note that numbers vary depending on batch size (number of images) per GPU. Non-DC5 models were trained with batch size 2, and DC5 with 1, so DC5 models show a significant drop in AP if evaluated with more than 1 image per GPU.

License

Conditional DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

@inproceedings{meng2021-CondDETR,
  title       = {Conditional DETR for Fast Training Convergence},
  author      = {Meng, Depu and Chen, Xiaokang and Fan, Zejia and Zeng, Gang and Li, Houqiang and Yuan, Yuhui and Sun, Lei and Wang, Jingdong},
  booktitle   = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year        = {2021}
}
Owner
Attention for Vision and Visualization
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022