Chess reinforcement learning by AlphaGo Zero methods.

Overview

Binder Demo Notebook

About

Chess reinforcement learning by AlphaGo Zero methods.

This project is based on these main resources:

  1. DeepMind's Oct 19th publication: Mastering the Game of Go without Human Knowledge.
  2. The great Reversi development of the DeepMind ideas that @mokemokechicken did in his repo: https://github.com/mokemokechicken/reversi-alpha-zero
  3. DeepMind just released a new version of AlphaGo Zero (named now AlphaZero) where they master chess from scratch: https://arxiv.org/pdf/1712.01815.pdf. In fact, in chess AlphaZero outperformed Stockfish after just 4 hours (300k steps) Wow!

See the wiki for more details.

Note

I'm the creator of this repo. I (and some others collaborators did our best: https://github.com/Zeta36/chess-alpha-zero/graphs/contributors) but we found the self-play is too much costed for an only machine. Supervised learning worked fine but we never try the self-play by itself.

Anyway I want to mention we have moved to a new repo where lot of people is working in a distributed version of AZ for chess (MCTS in C++): https://github.com/glinscott/leela-chess

Project is almost done and everybody will be able to participate just by executing a pre-compiled windows (or Linux) application. A really great job and effort has been done is this project and I'm pretty sure we'll be able to simulate the DeepMind results in not too long time of distributed cooperation.

So, I ask everybody that wish to see a UCI engine running a neural network to beat Stockfish go into that repo and help with his machine power.

Environment

  • Python 3.6.3
  • tensorflow-gpu: 1.3.0
  • Keras: 2.0.8

New results (after a great number of modifications due to @Akababa)

Using supervised learning on about 10k games, I trained a model (7 residual blocks of 256 filters) to a guesstimate of 1200 elo with 1200 sims/move. One of the strengths of MCTS is it scales quite well with computing power.

Here you can see an example where I (black) played against the model in the repo (white):

img

Here you can see an example of a game where I (white, ~2000 elo) played against the model in this repo (black):

img

First "good" results

Using the new supervised learning step I created, I've been able to train a model to the point that seems to be learning the openings of chess. Also it seems the model starts to avoid losing naively pieces.

Here you can see an example of a game played for me against this model (AI plays black):

partida1

Here we have a game trained by @bame55 (AI plays white):

partida3

This model plays in this way after only 5 epoch iterations of the 'opt' worker, the 'eval' worker changed 4 times the best model (4 of 5). At this moment the loss of the 'opt' worker is 5.1 (and still seems to be converging very well).

Modules

Supervised Learning

I've done a supervised learning new pipeline step (to use those human games files "PGN" we can find in internet as play-data generator). This SL step was also used in the first and original version of AlphaGo and maybe chess is a some complex game that we have to pre-train first the policy model before starting the self-play process (i.e., maybe chess is too much complicated for a self training alone).

To use the new SL process is as simple as running in the beginning instead of the worker "self" the new worker "sl". Once the model converges enough with SL play-data we just stop the worker "sl" and start the worker "self" so the model will start improving now due to self-play data.

python src/chess_zero/run.py sl

If you want to use this new SL step you will have to download big PGN files (chess files) and paste them into the data/play_data folder (FICS is a good source of data). You can also use the SCID program to filter by headers like player ELO, game result and more.

To avoid overfitting, I recommend using data sets of at least 3000 games and running at most 3-4 epochs.

Reinforcement Learning

This AlphaGo Zero implementation consists of three workers: self, opt and eval.

  • self is Self-Play to generate training data by self-play using BestModel.
  • opt is Trainer to train model, and generate next-generation models.
  • eval is Evaluator to evaluate whether the next-generation model is better than BestModel. If better, replace BestModel.

Distributed Training

Now it's possible to train the model in a distributed way. The only thing needed is to use the new parameter:

  • --type distributed: use mini config for testing, (see src/chess_zero/configs/distributed.py)

So, in order to contribute to the distributed team you just need to run the three workers locally like this:

python src/chess_zero/run.py self --type distributed (or python src/chess_zero/run.py sl --type distributed)
python src/chess_zero/run.py opt --type distributed
python src/chess_zero/run.py eval --type distributed

GUI

  • uci launches the Universal Chess Interface, for use in a GUI.

To set up ChessZero with a GUI, point it to C0uci.bat (or rename to .sh). For example, this is screenshot of the random model using Arena's self-play feature: capture

Data

  • data/model/model_best_*: BestModel.
  • data/model/next_generation/*: next-generation models.
  • data/play_data/play_*.json: generated training data.
  • logs/main.log: log file.

If you want to train the model from the beginning, delete the above directories.

How to use

Setup

install libraries

pip install -r requirements.txt

If you want to use GPU, follow these instructions to install with pip3.

Make sure Keras is using Tensorflow and you have Python 3.6.3+. Depending on your environment, you may have to run python3/pip3 instead of python/pip.

Basic Usage

For training model, execute Self-Play, Trainer and Evaluator.

Note: Make sure you are running the scripts from the top-level directory of this repo, i.e. python src/chess_zero/run.py opt, not python run.py opt.

Self-Play

python src/chess_zero/run.py self

When executed, Self-Play will start using BestModel. If the BestModel does not exist, new random model will be created and become BestModel.

options

  • --new: create new BestModel
  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Trainer

python src/chess_zero/run.py opt

When executed, Training will start. A base model will be loaded from latest saved next-generation model. If not existed, BestModel is used. Trained model will be saved every epoch.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)
  • --total-step: specify total step(mini-batch) numbers. The total step affects learning rate of training.

Evaluator

python src/chess_zero/run.py eval

When executed, Evaluation will start. It evaluates BestModel and the latest next-generation model by playing about 200 games. If next-generation model wins, it becomes BestModel.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Tips and Memory

GPU Memory

Usually the lack of memory cause warnings, not error. If error happens, try to change vram_frac in src/configs/mini.py,

self.vram_frac = 1.0

Smaller batch_size will reduce memory usage of opt. Try to change TrainerConfig#batch_size in MiniConfig.

Owner
Samuel
Samuel
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022