Python code for loading the Aschaffenburg Pose Dataset.

Overview

Aschaffenburg Pose Dataset (APD) DOI

This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and a description can be found at Zenodo. It contains trajectories as well as body poses of pedestrians and cyclists in road traffic recorded in Aschaffenburg, Germany. It is appropriate for training and testing methods for trajectory forecasting and intention prediction of vulnerable road users (VRUs) based on the past trajectory and body poses.

The body posture of the pedestrians and cyclists is available in the form of 2D and 3D poses. The 2D poses contain joint positions in an image coordinate system, while the 3D poses contain actual three-dimensional positions. The joints of the poses are shown in the picture below. The left skeleton shows the joints of the 2D poses and the right one shows the joints of the 3D poses. A detailed description and evaluation of the pose estimation method can be found in [1]. In addition to the trajectories and the poses, manually created labels of the respective motion states are included.

Usage

First download the dataset here and unzip the file. The actual Python module for loading and filtering the dataset can be found in the folder APD. In examples you find the example of how to use the code (plot_trajectories.py). The example loads the dataset from the provided path and plots the smoothed head trajectories in 2D from a bird's eye view (the poses are not visualized here). The trajectories can be filtered by VRU type and set using optional arguments:

Usage: python3 examples/plot_trajectories.py [-h] [-v VRU_TYPES] [-s SETS] path

Pipeline Arguments

positional arguments:
  path                  path to json files

optional arguments:
  -h, --help            show this help message and exit
  -v VRU_TYPES, --vru_types VRU_TYPES
                        select certain vru types for plotting ['ped', 'bike']
  -s SETS, --sets SETS  select certain sets for plotting ['train',
                        'validation', 'test']

Citation

If you find this dataset useful, please cite this paper (and refer the data as Aschaffenburg Pose Dataset or APD):

Kress, V. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. In: Pattern Recognition. ICPR International Workshops and Challenges, Springer International Publishing, 2020, pp. 57-71

Similar Datasets

Acknowledgment

This work was supported by “Zentrum Digitalisierung.Bayern”. In addition, the work is backed by the project DeCoInt2 , supported by the German Research Foundation (DFG) within the priority program SPP 1835: “Kooperativ interagierende Automobile”, grant numbers DO 1186/1-2 and SI 674/11-2.

References

[1] Kress, V. ; Jung, J. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Human Pose Estimation in Real Traffic Scenes. In: IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 518–523, doi: 10.1109/SSCI.2018.8628660

ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022