Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Overview

Dual-Level Collaborative Transformer for Image Captioning

This repository contains the reference code for the paper Dual-Level Collaborative Transformer for Image Captioning.

Experiment setup

please refer to m2 transformer

Data preparation

  • Annotation. Download the annotation file annotation.zip. Extarct and put it in the project root directory.
  • Feature. You can download our ResNeXt-101 feature (hdf5 file) here. Acess code: jcj6.
  • evaluation. Download the evaluation tools here. Acess code: jcj6. Extarct and put it in the project root directory.

There are five kinds of keys in our .hdf5 file. They are

  • ['%d_features' % image_id]: region features (N_regions, feature_dim)
  • ['%d_boxes' % image_id]: bounding box of region features (N_regions, 4)
  • ['%d_size' % image_id]: size of original image (for normalizing bounding box), (2,)
  • ['%d_grids' % image_id]: grid features (N_grids, feature_dim)
  • ['%d_mask' % image_id]: geometric alignment graph, (N_regions, N_grids)

We extract feature with the code in grid-feats-vqa.

The first three keys can be obtained when extracting region features with extract_region_feature.py. The forth key can be obtained when extracting grid features with code in grid-feats-vqa. The last key can be obtained with align.ipynb

Training

python train.py --exp_name dlct --batch_size 50 --head 8 --features_path ./data/coco_all_align.hdf5 --annotation annotation --workers 8 --rl_batch_size 100 --image_field ImageAllFieldWithMask --model DLCT --rl_at 17 --seed 118

Evaluation

python eval.py --annotation annotation --workers 4 --features_path ./data/coco_all_align.hdf5 --model_path path_of_model_to_eval --model DLCT --image_field ImageAllFieldWithMask --grid_embed --box_embed --dump_json gen_res.json --beam_size 5

Important args:

  • --features_path path to hdf5 file
  • --model_path
  • --dump_json dump generated captions to

Pretrained model is available here. Acess code: jcj6. By evaluating the pretrained model, you will get

{'BLEU': [0.8136727001615207, 0.6606095421082421, 0.5167535314080227, 0.39790755018790197], 'METEOR': 0.29522868252436046, 'ROUGE': 0.5914367650104326, 'CIDEr': 1.3382047139781112, 'SPICE': 0.22953477359195887}

References

[1] M2

[2] grid-feats-vqa

[3] butd

Acknowledgements

Thanks the original m2 and amazing work of grid-feats-vqa.

Owner
lyricpoem
lyricpoem
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022