Tensorflow AffordanceNet and AffContext implementations

Overview

AffordanceNet and AffContext

This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3.

The main objective of both architectures is to identify action affordances, so that they can be used in real robotic applications to understand the diverse objects present in the environment.

Both models have been trained on IIT-AFF and UMD datasets.

Detections on novel image

Novel image

Example of ground truth affordances compared with the affordance detection results by AffordanceNet and AffContext on the IIT-AFF dataset.

IIT results

IIT colours

Example of ground truth affordances compared with the affordance detection results by AffordanceNet and AffContext on the UMD dataset.

UMD results

UMD colours

AffordanceNet simultaneously detects multiple objects with their corresponding classes and affordances. This network mainly consists of two branches: an object detection branch to localise and classify the objects in the image, and an affordance detection branch to predict the most probable affordance label for each pixel in the object.

AffordanceNet

AffContext correctly predicts the pixel-wise affordances independently of the class of the object, which allows to infer the affordances for unseen objects. The structure of this network is similar to AffordanceNet, but the object detection branch only performs binary classification into foreground and background areas, and it includes two new blocks: an auxiliary task to infer the affordances in the region and a self-attention mechanism to capture rich contextual dependencies through the region.

AffContext

Results

The results of the tensorflow implementation are contrasted with the values provided in the papers from AffordanceNet and AffContext. However, since the procedure of how the results are processed to obtain the final metrics in both networks may be different, the results are also compared with the values obtained by running the original trained models, but processing the outputs and calculating the measures with the code from this repository. These results are denoted with * in the comparison tables.

Affordances AffordanceNet
(Caffe)
AffordanceNet* AffordanceNet
(tf)
contain 79.61 73.68 74.17
cut 75.68 64.71 66.97
display 77.81 82.81 81.84
engine 77.50 81.09 82.63
grasp 68.48 64.13 65.49
hit 70.75 82.13 83.25
pound 69.57 65.90 65.73
support 69.57 74.43 75.26
w-grasp 70.98 77.63 78.45
Average 73.35 74.06 74.87
Affordances AffContext
(Caffe)
AffContext* AffContext
(tf)
grasp 0.60 0.51 0.55
cut 0.37 0.31 0.26
scoop 0.60 0.52 0.52
contain 0.61 0.55 0.57
pound 0.80 0.68 0.64
support 0.88 0.69 0.21
w-grasp 0.94 0.88 0.85
Average 0.69 0.59 0.51

Setup guide

Requirements

  • Python 3
  • CUDA 10.1

Installation

  1. Clone the repository into your $AffordanceNet_ROOT folder.

  2. Install the required Python3 packages with: pip3 install -r requirements.txt

Testing

  1. Download the pretrained weights:

    • AffordanceNet weights trained on IIT-AFF dataset.
    • AffContext weights trained on UMD dataset.
  2. Extract the file into $AffordanceNet_ROOT/weights folder.

  3. Visualize results for AffordanceNet trained on IIT-AFF dataset:

python3 affordancenet_predictor.py --config_file config_iit_test
  1. Visualize results for AffContext trained on UMD dataset:
python3 affcontext_predictor.py --config_file config_umd_test

Training

  1. Download the IIT-AFF or UMD datasets in Pascal-VOC format following the instructions in AffordanceNet (IIT-AFF) and AffContext(UMD).

  2. Extract them into the $AffordanceNet_ROOT/data folder and make sure to have the following folder structure for IIT-AFF dataset:

    • cache/
    • VOCdevkit2012/

The same applies for UMD dataset, but folder names should be cache_UMD and VOCdevkit2012_UMD

  1. Run the command to train AffordanceNet on IIT-AFF dataset:
python3 affordancenet_trainer.py --config_file config_iit_train
  1. Run the command to train AffContext on UMD dataset:
python3 affcontext_trainer.py --config_file config_umd_train

Acknowledgements

This repo used source code from AffordanceNet and Faster-RCNN

Owner
Beatriz Pérez
MSc student in Computer Science at Universität Bonn, Germany. Computer Engineer from Universidad de Zaragoza, Spain.
Beatriz Pérez
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022