Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Overview

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Solution writeup: https://www.kaggle.com/c/g2net-gravitational-wave-detection/discussion/275341

Instructions

1. Download data

You have to download the competition dataset from competition website, and place the files in input/ directory.

┣ input/
┃   ┣ training_labels.csv
┃   ┣ sample_submission.csv
┃   ┣ train/
┃   ┣ test/
┃
┣ configs.py
┣ ...

(Optional:) Add your hardware configurations

# configs.py
HW_CFG = {
    'RTX3090': (16, 128, 1, 24), # CPU count, RAM amount(GB), GPU count, GPU RAM(GB)
    'A100': (9, 60, 1, 40), 
    'Your config', (128, 512, 8, 40) # add your hardware config!
}

2. Setup python environment

conda

conda env create -n kumaconda -f=environment.yaml
conda activate kumaconda

docker

WIP

3. Prepare data

Two new files - input/train.csv and input/test/.csv will be created.

python prep_data.py

(Optional:) Prepare waveform cache

Optionally you can speed up training by making waveform cache.
This is not recommend if your machine has RAM size smaller than 32GB.
input/train_cache.pickle and input/test_cache.pickle will be created.

python prep_data.py --cache

Then, add cache path to Baseline class in configs.py.

# configs.py
class Baseline:
    name = 'baseline'
    seed = 2021
    train_path = INPUT_DIR/'train.csv'
    test_path = INPUT_DIR/'test.csv'
    train_cache = INPUT_DIR/'train_cache.pickle' # here
    test_cache = INPUT_DIR/'test_cache.pickle' # here
    cv = 5

4. Train nueral network

Each experiment class has a name (e.g. name for Nspec16 is nspec_16).
Outputs of an experiment are

  • outoffolds.npy : (train size, 1) np.float32
  • predictions.npy : (cv fold, test size, 1) np.float32
  • {name}_{timestamp}.log : training log
  • foldx.pt : pytorch checkpoint

All outputs will be created in results/{name}/.

python train.py --config {experiment class}
# [Options]
# --progress_bar    : Everyone loves progress bar
# --inference       : Run inference only
# --tta             : Run test time augmentations (FlipWave)
# --limit_fold x    : Train a single fold x. You must run inference again by yourself.

5. Train neural network again (pseudo-label)

For experiments with name starting with Pseudo, you must use train_pseudo.py.
Outputs and options are the same as train.py.
Make sure the dependent experiment (see the table below) was successfully run.

python train_pseudo.py --config {experiment class}

Experiments

# Experiment Dependency Frontend Backend Input size CV Public LB Private LB
1 Pseudo06 Nspec12 CWT efficientnet-b2 256 x 512 0.8779 0.8797 0.8782
2 Pseodo07 Nspec16 CWT efficientnet-b2 128 x 1024 0.87841 0.8801 0.8787
3 Pseudo12 Nspec12arch0 CWT densenet201 256 x 512 0.87762 0.8796 0.8782
4 Pseudo13 MultiInstance04 CWT xcit-tiny-p16 384 x 768 0.87794 0.8800 0.8782
5 Pseudo14 Nspec16arch17 CWT efficientnet-b7 128 x 1024 0.87957 0.8811 0.8800
6 Pseudo18 Nspec21 CWT efficientnet-b4 256 x 1024 0.87942 0.8812 0.8797
7 Pseudo10 Nspec16spec13 CWT efficientnet-b2 128 x 1024 0.87875 0.8802 0.8789
8 Pseudo15 Nspec22aug1 WaveNet efficientnet-b2 128 x 1024 0.87846 0.8809 0.8794
9 Pseudo16 Nspec22arch2 WaveNet efficientnet-b6 128 x 1024 0.87982 0.8823 0.8807
10 Pseudo19 Nspec22arch6 WaveNet densenet201 128 x 1024 0.87831 0.8818 0.8804
11 Pseudo17 Nspec23arch3 CNN efficientnet-b6 128 x 1024 0.87982 0.8823 0.8808
12 Pseudo21 Nspec22arch7 WaveNet effnetv2-m 128 x 1024 0.87861 0.8831 0.8815
13 Pseudo22 Nspec23arch5 CNN effnetv2-m 128 x 1024 0.87847 0.8817 0.8799
14 Pseudo23 Nspec22arch12 WaveNet effnetv2-l 128 x 1024 0.87901 0.8829 0.8811
15 Pseudo24 Nspec30arch2 WaveNet efficientnet-b6 128 x 1024 0.8797 0.8817 0.8805
16 Pseudo25 Nspec25arch1 WaveNet efficientnet-b3 256 x 1024 0.87948 0.8820 0.8803
17 Pseudo26 Nspec22arch10 WaveNet resnet200d 128 x 1024 0.87791 0.881 0.8797
18 PseudoSeq04 Seq03aug3 ResNet1d-18 - 0.87663 0.8804 0.8785
19 PseudoSeq07 Seq12arch4 WaveNet - 0.87698 0.8796 0.8784
20 PseudoSeq03 Seq09 DenseNet1d-121 - 0.86826 0.8723 0.8703
Owner
Hiroshechka Y
ML Engineer | Kaggle Master | Public Health
Hiroshechka Y
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022