Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Overview

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers

Description:

Model Optimizer in Intel(r) OpenVINO(tm) toolkit supports model division function. User can specify the region in the model to convert by specifying entry point and exit point with --input and --output options respectively.
The expected usage of those options are:

  • Excluding unnecessary layers: Removing non-DL related layers (such as JPEG decode) and layers not required for inferencing (such as accuracy metrics calculation)
  • Load balancing: Divide a model into multiple parts and cascade them to get the final inferencing result. Each individual part can be run on different device or different timing.
  • Access to the intermediate result: Divide a model and get the intermediate feature data to check the model integrity or for the other purposes.
  • Exclude non-supported layers: Convert the model without OpenVINO non-supprted layers. Divide the model and skip non-supported layers to get the IR models. User needs to perform the equivalent processing for the excluded layers to get the correct inferencing result.

This project demonstrates how to divide a DL model, and fill the hole for skipped leyers.
The project includes Python and C++ implementations of naive 2D convolution layer to perform the Conv2D task which was supposed to have done by the skipped layer. This could be a good reference when you need to implement a custom layer function to your project but don't want to develop full-blown OpenVINO custom layers due to some restrictions such as development time.
In this project, we will use a simple CNN classification model trained with MNIST dataset and demonstrate the way to divide the model with skipping a layer (on purpose) and use a simple custom layer to cover the data processing for the skipped layer.

image

Prerequisites:

  • TensorFlow 2.x
  • OpenVINO 2021.4 (2021.x may work)

How to train the model and create a trained model

You can train the model by just kicking the training.py script. training.py will use keras.datasets.mnist as the training and validation dataset and train the model, and then save the trained model in SavedModel format.
training.py also generates weights.npy file that contains the weight and bias data of target_conv_layer layer. This weight and bias data will be used by the special made Conv2D layer.
Since the model we use is tiny, it will take just a couple of minutes to complete.

python3 training.py

How to convert a TF trained model into OpenVINO IR model format

Model Optimizer in OpenVINO converts TF (savedmodel) model into OpenVINO IR model.
Here's a set of script to convert the model for you.

script description
convert-normal.sh Convert entire model and generate single IR model file (no division)
convert-divide.sh Divide the input model and output 2 IR models. All layers are still contained (no skipped layers)
convert-divide-skip.sh Divide the input model and skip 'target_conv_layer'
  • The converted models can be found in ./models folder.

Tip to find the correct node name for Model Optimizer

Model optimizer requires MO internal networkx graph node name to specify --input and --output nodes. You can modify the model optimizer a bit to have it display the list of networkx node names. Add 3 lines on the very bottom of the code snnipet below and run the model optimizer.

mo/utils/class_registration.py

def apply_replacements_list(graph: Graph, replacers_order: list):
    """
    Apply all transformations from replacers_order
    """
    for i, replacer_cls in enumerate(replacers_order):
        apply_transform(
            graph=graph,
            replacer_cls=replacer_cls,
            curr_transform_num=i,
            num_transforms=len(replacers_order))
        # Display name of available nodes after the 'loader' stage
        if 'LoadFinish' in str(replacer_cls):
            for node in graph.nodes():
                print(node)

You'll see something like this. You need to use one of those node names for --input and --output options in MO.

conv2d_input
Func/StatefulPartitionedCall/input/_0
unknown
Func/StatefulPartitionedCall/input/_1
StatefulPartitionedCall/sequential/conv2d/Conv2D/ReadVariableOp
StatefulPartitionedCall/sequential/conv2d/Conv2D
   :   (truncated)   :
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp
StatefulPartitionedCall/sequential/dense_1/BiasAdd
StatefulPartitionedCall/sequential/dense_1/Softmax
StatefulPartitionedCall/Identity
Func/StatefulPartitionedCall/output/_11
Func/StatefulPartitionedCall/output_control_node/_12
Identity
Identity56

How to infer with the models on OpenVINO

Several versions of scripts are available for the inference testing.
Those test programs will do inference 10,000 times with the MNIST validation dataset. Test program displays '.' when inference result is correct and 'X' when it's wrong. Performance numbers are measured from the start of 10,000 inferences to the end of all inferences. So, it is including loop overhead, pre/post processing time and so on.

script description (reference execution time, Core i7-8665U)
inference.py Use simgle, monolithic IR model and run inference 3.3 sec
inference-div.py Take 2 divided IR models and run inference. 2 models will be cascaded. 5.3 sec(*1)
inference-skip-python.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program is including a Python version of Conv2D and perform convolution for 'target_conv_layer'. VERY SLOW. 4338.6 sec
inference-skip-cpp.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program imports a Python module written in C++ which includes a C++ version of Conv2D. Reasonably fast. Conv2D Python extension module is required. Please refer to the following section for details. 10.8 sec

Note 1: This model is quite tiny and light-weight. OpenVINO can run this model in <0.1msec on Core i7-8665U CPU. The inferencing overhead introduced by dividing the model is noticeable but when you use heavy model, this penalty might be negligible.

How to build the Conv2D C++ Python extnsion module

You can build the Conv2D C++ Python extension module by running build.sh or build.bat.
myLayers.so or myLayers.pyd will be generated and copied to the current directory after a successful build.

How to run draw-and-infer demo program

Here's a simple yet bit fun demo application for MNIST CNN. You can draw a number on the screen by mouse or finger-tip and you'll see the real-time inference result. Right-click will clear the screen for another try. Several versions are available.

script description
draw-and-infer.py Use the monolithic IR model
draw-and-infer-div.py Use divided IR models
draw-and-infer-skip-cpp.py Use divided IR models which excluded 'target_conv_layer'. Conv2D Python extension is requird.

draw-and-infer

Tested environment

  • Windows 10 + VS2019 + OpenVINO 2021.4
  • Ubuntu 20.04 + OpenVINO 2021.4
Owner
Yasunori Shimura
Yasunori Shimura
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022