Automatic tool focused on deriving metallicities of open clusters

Overview

metalcode

Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs.harvard.edu/abs/2010A%26A...514A..81P/abstract).

Description

This is the version 1.0 of the automated version of the procedure devised by Pöhnl & Paunzen (2010). The tool is focused on calculating metallicities Z (and logAge) of open clusters, assuming that accurate values of reddening and distance are provided (determined by independent methods). Before the code is applied, data for the cluster members (photometric brightness and colour) need to be prepared together with a file containing the list of clusters together with additional parameters. Examples of the data files are provided with the code. The code is applicable to Johnson (V,B-V), Gaia (G,BP-RP) and 2MASS (J,J-Ks) photometric systems.

The run-time of the code will depend on the total number of clusters in the included list, on the number of cluster members, and on the user input parameters. For example, if user inputs:

  • age_step=0.2
  • z_step=0.005
  • Nredd=5
  • Niter=6

code will return results within 1-2 min for a typical open cluster. However, it can run for longer in the case of a larger cluster (for the included example of NGC 6791, the code returned results after 20 min). Furthermore, the specific run-time is also hardware-dependent (the code was tested on AMD Ryzen 3 PRO 4450U).

See Piecka & Paunzen (submitted) for a full description of the methods applied in the code.

Requirements

In order to run the code, user must have installed Python 3 with numpy. The other libraries (matplotlib, time, os) are not required for the proper functionality of the code, but provide additional information useful information (e.g. figures).

The code was tested on the following operating systems:

  • Windows 10
  • Ubuntu 20.04 LTS
  • Fedora 34

Installation

Only Python 3 and the mentioned libraries need to be installed. Otherwise, no additional installation is needed.

Usage

To launch the tool, run the script metalcode_v1_0.py. For successful application of the tool, a cluster list and the associated data files need to be included prior to running the script.

Input

We describe several data files in this section of the documentation. As column separation, we use spaces between values. Furthermore, isochrone grids are required for the code to run. The included grids (logAge=6.6..10.0, Z=0.005..0.040, delta_logAge=0.1, delta_Z=0.005) are for the three photometric systems described below. The isochrones should be included in the main folder, the other files (described below) should be located in the clusters folder.

On the input (before the code is executed), the user must provide a file containing the list of clusters together with additional parameters (_complete.txt in clusters folder). The structure of this file adheres to the following format (the first line of the file is skipped on loading):

CLUSTER_NAME   GAL_LATITUDE_deg   PARALLAX_mas   DISTANCE_pc   E(B-V)_mag
...            ...                ...            ...           ...

The cluster name should be written as one word (spaces should be replaced by underscores). Galactic latitude and parallax are not necessary - they should be used only if reddening is taken from extinction maps (in that case, expcor parameter in the code should be changed to 1). If the reddening value is not known and there is no good guess, set the value to be any negative value. The code will then use a pre-determined set of reddening values (in magnitudes: 0.010, 0.040, 0.080, 0.125, 0.250, 0.500, 0.750, 1.000, 1.500, 2.000).

Secondly, a set of files containing cluster data is required. The cluster data should be provided for the specific photometric system, and the file name should coincide with CLUSTER_NAME_X, where the suffix X should be replaced by the following:

  • G for Gaia (G, BP-RP)
  • 2 for 2MASS (J, J-Ks)
  • J for Johnson (V, B-V)

The first line of the data file is skipped. The columns should follow the given format (in mag):

PHOTOMETRIC_BRIGHTNESS   PHOTOMETRIC_COLOUR
...                      ...

We strongly suggest that the users pre-analyse the colour-magnitude diagrams. Obvious binary sequences, white dwarfs, and possible other clear outliers should be removed in advance. This is necessary in the current version of the code due to the limitations of the included isochrone fitting sub-procedure.

Finally, the code will ask the user to specify additional parameters once it has been launched.

  1. Photometric system: Enter G, J or 2 (depending on the photometric system for which the data are available, see above for details).
  2. Isochrone grid spacing, age_step: In the current version, the user can choose between two spacings in the isochrone grid (0.1 or 0.2).
  3. Isochrone grid spacing, z_step: In the current version, use only value 0.005 (can be changed by the user, but the set of isochrones should be changed accordingly, if necessary).
  4. Number of reddening iterations, Nredd: The number of reddening values that should be studied by the code. Choose 1 if you want to use only the initial estimate value E(B-V)_ini. For 0, a predetermined set of ten values is used. Otherwise, use any odd number larger than 1.
  5. Reddening range, redAdj: The relative range for reddening iterations. For example, if redAdj=0.3 is given and Nredd > 1, then the code will start at the value 0.7*E(B-V)_ini and end at 1.3*E(B-V)_ini. The value of the initial estimate is always included (if Nredd>=1). Values between 0 and 1 are acceptable, excluding the limits.
  6. Maximum number of iterations, Niter: Determines the maximum number of iterations while searching for metallicity for a given reddening value. Necessary because the code may get stuck between two possible solutions. A large number is not advised, because the number of iterations is typically smaller than five. We recommend using Niter=6 for the currently included grids.

Output

The code provides all of the useful information on the output. If debugTest is set to True, the code will return additional information about the individual cluster members (values used in calculations, usually only required for debugging).

First of all, the solutions for different assumed reddening values will generally differ. For this, we include the results for all of the reddening values in a log-file in the finished folder. Included are the user input parameters, resulting cluster parameters (together with the quality-of-fit value, that should be minimised in the code) and the run-time for each of the individual clusters.

Secondly, the figures (CMD and LTN diagram) for the three best solutions are plotted saved in the finished folder. These figures should be consulted before interpreting the results.

Sub-procedures

Details regarding the sub-procedures can be found in our paper. We would like to point out here that most of the sub-procedure can be easily exchanged. For example, the sub-procedures metalcode_calib_absmg and metalcode_calib_clrex are used to apply steps that deredden the colour and correct the brightness for the extinction. The transformation coefficients can be exchanged by the user (if required).

Furthermore, we use pre-prepared set of polynomial relation in order to calculate Teff and BC for a given combination of the colour and metallicity values. These calibrations were based on the isochrones themselves (and may slightly differ from the empirical, observation-based, relations found in the literature). If the user wishes to replace the relations, sets of polynomial coefficients have to be replaced in metalcode_calib_tempe. Because of how our code works, the user should prepare the coefficients for the different Z values, starting from Z=0.001 up to Z=0.040 (in the current version), with delta_Z=0.001.

Finally, the isochrone fitting technique is based only on a simple least-square method. In order to use any other technique, one should alter the file "metalcode_calc_lstsqr". The only requirement is that LstSqr() from this sub-procedure returns a quality-of-fit value that needs to be minimised.

We would like to point out that the currently included fitting technique was prepared only the for testing purposes, and it may not be sophisticated enough to produce results for proper scientific analysis. We urge the user to replace this sub-procedure if possible. In the future updates, we will replace this sub-procedure ourselves so that the code can be used for a scientific work right out of the box.

Examples

We include a list of ten examples of open clusters that we analysed in our work. The observational data for the individual clusters were taken from the following sources:

All data files were manually pre-filtered in order to remove binary sequences, white dwarfs, and other possible outliers. A clear sequence of stars (main sequence + giants) is required with the currently introduced isochrone fitting sub-procedure.

Acknowledgements

The work was supported from Operational Programme Research, Development and Education - ,,Project Internal Grant Agency of Masaryk University'' (No. CZ.02.2.69/0.0/0.0/19_073/0016943).

This work makes use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

This research has made use of the WEBDA database (https://webda.physics.muni.cz), operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University.

The isochrones were taken from http://stev.oapd.inaf.it/cgi-bin/cmd_3.5 (using default settings, except for the choice of the passbands).

This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022