The MLOps platform for innovators 🚀

Overview

The official DS2.ai SDK for Python.
Documentation can be found on SDK guide

MLOps with DS2.ai

DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training dataset through data labeling, and enables automatic development of artificial intelligence and easy deployment and operation. ​ The Software Development Kit (SDK) consists of python functions that allow you to write your own scripts by accessing DS2.ai's features. ​ Screen_Shot_2021-07-01_at_3 37 53_PM

Installation

​ ​ Install via pip: ​

$ pip install ds2ai

​ ​

Getting started

​ ​

1. Getting your own token

​ To use the SDK, you need to get a token, and you can check the token by registering as a member of ds2.ai. After registering the card on the site, you can use the token.

​ ### 2. Activate ​ To use SDK function code, you have to activate your code, first. ​ Run the below code with your own app token. ​ ```python import ds2ai ​ ds2 = ds2ai.DS2(token) ``` ​ Then you can use all functions in [SDK guide](https://docs.ds2.ai/sdk_00_readme/) ​ --- ​ ## Top 5 Features of [DS2.ai](https://ds2.ai/) SDK ​ ​ The SDK is composed of 16 classes. Class DS2 provides python functions that are more generally used for AI development, whereas the others provide specific functions for each detailed steps in AI development. ​ Here, we want to explain to you examples of using **Top5 function codes that are usable and easy to use.** ​ ​ ### 1. Auto Labeling ​ ```python ds2.start_auto_labeling(data_file, amount, has_label_data=False, predict_column_name=None, frame=60, ai_type="general", autolabeling_type="box", general_ai_type="person", model_id=None, custom_ai_stage=0, preprocessing_ai_type={}, labeling_class=[], training_method="object_detection", name='', description='' )

​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60) ">

This function executes auto-labeling immediately from loading data file without using dataconnector. The major parameters include data_file to auto-label, whether the data includes labeled data for a certain part of the dataset, and the type of auto-labeling, such as “box”, which will label using bounding boxes.
​


​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60)

This function executes development of AI from CLICK AI in DS2.ai’s console immediately from loading data file without using dataconnector. According to what parameters you use when calling the function, such as data_file, training_method, value_for_predict, and option, it will generate your customized AI models.

3. Deploy your AI model

ds2.deploy(model_file, name=None, cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge")

This function deploys AI models to cloud servers with specifications under the desired hosting region. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


​ ### 4. Getting magic code ​ ```python ds2.get_magic_code(training_method, data_file, value_for_predict) ```

This function returns a the magic code for setting variable values with optimal combinations for AI training. As with the three functions above, it takes the data_file, training_method, value_for_predict as input so that after running the function, a magic code with the whole process of AI training is returned. ​

5. Rent AI training server

ds2.rent_custom_training_server(cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge", name=None)

This function rents an inference training server in preferred cloud environment for Custom training of Click AI. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


Getting Help

​ You can interact with the ds2ai code or software by asking a question or referencing the guide from the underlying open resources. ​

License

​ This SDK is distributed under the Apache-2.0 License, please see LICENSE for more information. ​


Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022