Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

Overview

CMaskTrack R-CNN for OVIS

This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation dataset described in the tech report:

Occluded Video Instance Segmentation

Jiyang Qi1,2*, Yan Gao2*, Yao Hu2, Xinggang Wang1, Xiaoyu Liu2,
Xiang Bai1, Serge Belongie3, Alan Yuille4, Philip Torr5, Song Bai2,5 📧
1Huazhong University of Science and Technology 2Alibaba Group 3University of Copenhagen
4Johns Hopkins University 5University of Oxford

In this work, we collect a large-scale dataset called OVIS for Occluded Video Instance Segmentation. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario.

We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion.

Some annotation examples can be seen below:

2592056 2930398 2932104 3021160

For more details about the dataset, please refer to our paper or website.

Model training and evaluation

Installation

This repo is built based on MaskTrackRCNN. A customized COCO API for the OVIS dataset is also provided.

You can use following commands to create conda env with all dependencies.

conda create -n cmtrcnn python=3.6 -y
conda activate cmtrcnn

conda install -c pytorch pytorch=1.3.1 torchvision=0.2.2 cudatoolkit=10.1 -y
pip install -r requirements.txt
pip install git+https://github.com/qjy981010/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

bash compile.sh

Data preparation

  1. Download OVIS from our website.
  2. Symlink the train/validation dataset to data/OVIS/ folder. Put COCO-style annotations under data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── OVIS
│   │   ├── train_images
│   │   ├── valid_images
│   │   ├── annotations
│   │   │   ├── annotations_train.json
│   │   │   ├── annotations_valid.json

Training

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on OVIS based on a MSCOCO pretrained checkpoint (mmlab link or google drive).

Run the command below to train the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py --work_dir ./workdir/cmasktrack_rcnn_r50_fpn_1x_ovis --gpus 4

For reference to arguments such as learning rate and model parameters, please refer to configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py.

Evaluation

Our pretrained model is available for download at Google Drive (comming soon). Run the following command to evaluate the model on OVIS.

CUDA_VISIBLE_DEVICES=0 python test_video.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py [MODEL_PATH] --out [OUTPUT_PATH.pkl] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.pkl.json. OVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license, while the correlation ops is under MIT license.

Acknowledgement

This project is based on mmdetection (commit hash f3a939f), mmcv, MaskTrackRCNN and Pytorch-Correlation-extension. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@article{qi2021occluded,
    title={Occluded Video Instance Segmentation},
    author={Jiyang Qi and Yan Gao and Yao Hu and Xinggang Wang and Xiaoyu Liu and Xiang Bai and Serge Belongie and Alan Yuille and Philip Torr and Song Bai},
    journal={arXiv preprint arXiv:2102.01558},
    year={2021},
}
Owner
Q . J . Y
A coder from hust
Q . J . Y
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022