(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

Overview

RDPNet

IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

PyTorch training and testing code are available. We have achieved SOTA performance on the salient instance segmentation (SIS) task.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[Official Ver.] [PDF]

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{wu2021regularized,
   title={Regularized Densely-Connected Pyramid Network for Salient Instance Segmentation},
   volume={30},
   ISSN={1941-0042},
   DOI={10.1109/tip.2021.3065822},
   journal={IEEE Transactions on Image Processing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Wu, Yu-Huan and Liu, Yun and Zhang, Le and Gao, Wang and Cheng, Ming-Ming},
   year={2021},
   pages={3897–3907}
}

Requirements

  • PyTorch 1.1/1.0.1, Torchvision 0.2.2.post3, CUDA 9.0/10.0/10.1, apex
  • Validated on Ubuntu 16.04/18.04, PyTorch 1.1/1.0.1, CUDA 9.0/10.0/10.1, NVIDIA TITAN Xp

Installing

Please check INSTALL.md.

Note: we have provided an early tested apex version (url: here) and place it in our root folder (./apex/). You can also try other apex versions, which are not tested by us.

Data

Before training/testing our network, please download the data: [Google Drive, 0.7G], [Baidu Yun, yhwu].

The above zip file contains data of the ISOD and SOC dataset.

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./datasets/ folder. Then, the ./datasets/ folder should contain two folders: isod/, soc/.

Train

It is very simple to train our network. We have prepared a script to run the training step. You can at first train our ResNet-50-based network on the ISOD dataset:

cd scripts
bash ./train_isod.sh

The training step should cost less than 1 hour for single GTX 1080Ti or TITAN Xp. This script will also store the network code, config file, log, and model weights.

We also provide ResNet-101 and ResNeXt-101 training scripts, and they are all in the scripts folder.

The default training code is for single gpu training since the training time is very low. You can also try multi gpus training by replacing --nproc_per_node=1 \ with --nproc_per_node=2 \ for 2-gpu training.

Test / Evaluation / Results

It is also very simple to test our network. First you need to download the model weights:

Taking the test on the ISOD dataset for example:

  1. Download the ISOD trained model weights, put it to model_zoo/ folder.
  2. cd the scripts folder, then run bash test_isod.sh.
  3. Testing step usually costs less than a minute. We use the official cocoapi for evaluation.

Note1: We strongly recommend to use cocoapi to evaluate the performance. Such evaluation is also automatically done with the testing process.

Note2: Default cocoapi evaluation outputs AP, AP50, AP75 peformance. To output the score of AP70, you need to change the cocoeval.py in cocoapi. See changes in this commitment:

BEFORE: stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
AFTER:  stats[2] = _summarize(1, iouThr=.70, maxDets=self.params.maxDets[2])

Note3: If you are not familiar with the evalutation metric AP, AP50, AP75, you can refer to the introduction website here. Our official paper also introduces them in the Experiments section.

Visualize

We provide a simple python script to visualize the result: demo/visualize.py.

  1. Be sure that you have downloaded the ISOD pretrained weights [Google Drive, 0.14G].
  2. Put images to the demo/examples/ folder. I have prepared some images in this paper so do not worry that you have no images.
  3. cd demo, run python visualize.py
  4. Visualized images are generated in the same folder. You can change the target folder in visualize.py.

TODO

  1. Release the weights for real-world applications
  2. Add Jittor implementation
  3. Train with the enhanced base detector (FCOS TPAMI version) for better performance. Currently the base detector is the FCOS conference version with a bit lower performance.

Other Tips

I am free to answer your question if you are interested in salient instance segmentation. I also encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

Acknowlogdement

This repository is built under the help of the following three projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023