Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Overview

Video Autoencoder: self-supervised disentanglement of 3D structure and motion

This repository contains the code (in PyTorch) for the model introduced in the following paper:

Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Zihang Lai, Sifei Liu, Alexi A. Efros, Xiaolong Wang
ICCV, 2021
[Paper] [Project Page] [12-min oral pres. video] [3-min supplemental video]

Figure

Citation

@inproceedings{Lai21a,
        title={Video Autoencoder: self-supervised disentanglement of 3D structure and motion},
        author={Lai, Zihang and Liu, Sifei and Efros, Alexei A and Wang, Xiaolong},
        booktitle={ICCV},
        year={2021}
}

Contents

  1. Introduction
  2. Data preparation
  3. Training
  4. Evaluation
  5. Pretrained model

Introduction

Figure We present Video Autoencoder for learning disentangled representations of 3D structure and camera pose from videos in a self-supervised manner. Relying on temporal continuity in videos, our work assumes that the 3D scene structure in nearby video frames remains static. Given a sequence of video frames as input, the Video Autoencoder extracts a disentangled representation of the scene including: (i) a temporally-consistent deep voxel feature to represent the 3D structure and (ii) a 3D trajectory of camera poses for each frame. These two representations will then be re-entangled for rendering the input video frames. Video Autoencoder can be trained directly using a pixel reconstruction loss, without any ground truth 3D or camera pose annotations. The disentangled representation can be applied to a range of tasks, including novel view synthesis, camera pose estimation, and video generation by motion following. We evaluate our method on several large-scale natural video datasets, and show generalization results on out-of-domain images.

Dependencies

The following dependencies are not strict - they are the versions that we use.

Data preparation

RealEstate10K:

  1. Download the dataset from RealEstate10K.
  2. Download videos from RealEstate10K dataset, decode videos into frames. You might find the RealEstate10K_Downloader written by cashiwamochi helpful. Organize the data files into the following structure:
RealEstate10K/
    train/
        0000cc6d8b108390.txt
        00028da87cc5a4c4.txt
        ...
    test/
        000c3ab189999a83.txt
        000db54a47bd43fe.txt
        ...
dataset/
    train/
        0000cc6d8b108390/
            52553000.jpg
            52586000.jpg
            ...
        00028da87cc5a4c4/
            ...
    test/
        000c3ab189999a83/
        ...
  1. Subsample the training set at one-third of the original frame-rate (so that the motion is sufficiently large). You can use scripts/subsample_dataset.py.
  2. A list of videos ids that we used (10K for training and 5K for testing) is provided here:
    1. Training video ids and testing video ids.
    2. Note: as time changes, the availability of videos could change.

Matterport 3D (this could be tricky):

  1. Install habitat-api and habitat-sim. You need to use the following repo version (see this SynSin issue for details):

    1. habitat-sim: d383c2011bf1baab2ce7b3cd40aea573ad2ddf71
    2. habitat-api: e94e6f3953fcfba4c29ee30f65baa52d6cea716e
  2. Download the models from the Matterport3D dataset and the point nav datasets. You should have a dataset folder with the following data structure:

    root_folder/
         mp3d/
             17DRP5sb8fy/
                 17DRP5sb8fy.glb  
                 17DRP5sb8fy.house  
                 17DRP5sb8fy.navmesh  
                 17DRP5sb8fy_semantic.ply
             1LXtFkjw3qL/
                 ...
             1pXnuDYAj8r/
                 ...
             ...
         pointnav/
             mp3d/
                 ...
    
  3. Walk-through videos for pretraining: We use a ShortestPathFollower function provided by the Habitat navigation package to generate episodes of tours of the rooms. See scripts/generate_matterport3d_videos.py for details.

  4. Training and testing view synthesis pairs: we generally follow the same steps as the SynSin data instruction. The main difference is that we precompute all the image pairs. See scripts/generate_matterport3d_train_image_pairs.py and scripts/generate_matterport3d_test_image_pairs.py for details.

###Replica:

  1. Testing view synthesis pairs: This procedure is similar to step 4 in Matterport3D - with only the specific dataset changed. See scripts/generate_replica_test_image_pairs.py for details.

Configurations

Finally, change the data paths in configs/dataset.yaml to your data location.

Pre-trained models

  • Pre-trained model (RealEstate10K): Link
  • Pre-trained model (Matterport3D): Link

Training:

Use this script:

CUDA_VISIBLE_DEVICES=0,1 python train.py --savepath log/train --dataset RealEstate10K

Some optional commands (w/ default value in square bracket):

  • Select dataset: --dataset [RealEstate10K]
  • Interval between clip frames: --interval [1]
  • Change clip length: --clip_length [6]
  • Increase/decrease lr step: --lr_adj [1.0]
  • For Matterport3D finetuning, you need to set --clip_length 2, because the data are pairs of images.

Evaluation:

1. Generate test results:

Use this script (for testing RealEstate10K):

CUDA_VISIBLE_DEVICES=0 python test_re10k.py --savepath log/model --resume log/model/checkpoint.tar --dataset RealEstate10K

or this script (for testing Matterport3D/Replica):

CUDA_VISIBLE_DEVICES=0 python test_mp3d.py --savepath log/model --resume log/model/checkpoint.tar --dataset Matterport3D

Some optional commands:

  • Select dataset: --dataset [RealEstate10K]
  • Max number of frames: --frame_limit [30]
  • Max number of sequences: --video_limit [100]
  • Use training set to evaluate: --train_set

Running this will generate a output folder where the results (videos and poses) save. If you want to visualize the pose, use packages for evaluation of odometry, such as evo. If you want to quantitatively evaluate the results, see 2.1, 2.2.

2.1 Quantitative Evaluation of synthesis results:

Use this script:

python eval_syn_re10k.py [OUTPUT_DIR] (for RealEstate10K)
python eval_syn_mp3d.py [OUTPUT_DIR] (for Matterport3D)

Optional commands:

  • Evaluate LPIPS: --lpips

2.2 Quantitative Evaluation of pose prediction results:

Use this script:

python eval_pose.py [POSE_DIR]

Contact

For any questions about the code or the paper, you can contact zihang.lai at gmail.com.

Owner
Working from home
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022