Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

Overview

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint

Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatnam


MIT license PWC PWC PWC PWC PWC PWC PWC PWC

Efficient-VDVAE is a memory and compute efficient very deep hierarchical VAE. It converges faster and is more stable than current hierarchical VAE models. It also achieves SOTA likelihood-based performance on several image datasets.

Pre-trained model checkpoints

We provide checkpoints of pre-trained models on MNIST, CIFAR-10, Imagenet 32x32, Imagenet 64x64, CelebA 64x64, CelebAHQ 256x256 (5-bits and 8-bits), FFHQ 256x256 (5-bits and 8bits), CelebAHQ 1024x1024 and FFHQ 1024x1024 in the links in the table below. All provided models are the ones trained for table 4 of the paper.

Dataset Pytorch JAX Negative ELBO
Logs Checkpoints Logs Checkpoints
MNIST link link link link 79.09 nats
CIFAR-10 Queued Queued link link 2.87 bits/dim
Imagenet 32x32 link link link link 3.58 bits/dim
Imagenet 64x64 link link link link 3.30 bits/dim
CelebA 64x64 link link link link 1.83 bits/dim
CelebAHQ 256x256 (5-bits) link link link link 0.51 bits/dim
CelebAHQ 256x256 (8-bits) link link link link 1.35 bits/dim
FFHQ 256x256 (5-bits) link link link link 0.53 bits/dim
FFHQ 256x256 (8-bits) link link link link 2.17 bits/dim
CelebAHQ 1024x1024 link link link link 1.01 bits/dim
FFHQ 1024x1024 link link link link 2.30 bits/dim

Notes:

  • Downloading from the "Checkpoints" link will download the minimal required files to resume training/do inference. The minimal files are the model checkpoint file and the saved hyper-parameters of the run (explained further below).
  • Downloading from the "Logs" link will download additional pre-training logs such as tensorboard files or saved images from training. "Logs" also holds the saved hyper-parameters of the run.
  • Downloaded "Logs" and/or "Checkpoints" should be always unzipped in their implementation folder (efficient_vdvae_torch for Pytorch checkpoints and efficient_vdvae_jax for JAX checkpoints).
  • Some of the model checkpoints are missing in either Pytorch or JAX for the moment. We will update them soon.

Pre-requisites

To run this codebase, you need:

  • Machine that runs a linux based OS (tested on Ubuntu 20.04 (LTS))
  • GPUs (preferably more than 16GB)
  • Docker
  • Python 3.7 or higher
  • CUDA 11.1 or higher (can be installed from here)

We recommend running all the code below inside a Linux screen or any other terminal multiplexer, since some commands can take hours/days to finish and you don't want them to die when you close your terminal.

Note:

  • If you're planning on running the JAX implementation, the installed JAX must use exactly the same CUDA and Cudnn versions installed. Our default Dockerfile assumes the code will run with CUDA 11.4 or newer and should be changed otherwise. For more details, refer to JAX installation.

Installation

To create the docker image used in both the Pytorch and JAX implementations:

cd build  
docker build -t efficient_vdvae_image .  

Note:

  • If using JAX library on ampere architecture GPUs, it's possible to face a random GPU hanging problem when training on multiple GPUs (issue). In that case, we provide an alternative docker image with an older version of JAX to bypass the issue until a solution is found.

All code executions should be done within a docker container. To start the docker container, we provide a utility script:

sh docker_run.sh  # Starts the container and attaches terminal
cd /workspace/Efficient-VDVAE  # Inside docker container

Setup datasets

All datasets can be automatically downloaded and pre-processed from the convenience script we provide:

cd data_scripts
sh download_and_preprocess.sh <dataset_name>

Notes:

  • <dataset_name> can be one of (imagenet32, imagenet64, celeba, celebahq, ffhq). MNIST and CIFAR-10 datasets will get automatically downloaded later when training the model, and they do no require any dataset setup.
  • For the celeba dataset, a manual download of img_align_celeba.zip and list_eval_partition.txt files is necessary. Both files should be placed under <project_path>/dataset_dumps/.
  • img_align_celeba.zip download link.
  • list_eval_partition.txt download link.

Setting the hyper-parameters

In this repository, we use hparams library (already included in the Dockerfile) for hyper-parameter management:

  • Specify all run parameters (number of GPUs, model parameters, etc) in one .cfg file
  • Hparams evaluates any expression used as "value" in the .cfg file. "value" can be any basic python object (floats, strings, lists, etc) or any python basic expression (1/2, max(3, 7), etc.) as long as the evaluation does not require any library importations or does not rely on other values from the .cfg.
  • Hparams saves the configuration of previous runs for reproducibility, resuming training, etc.
  • All hparams are saved by name, and re-using the same name will recall the old run instead of making a new one.
  • The .cfg file is split into sections for readability, and all parameters in the file are accessible as class attributes in the codebase for convenience.
  • The HParams object keeps a global state throughout all the scripts in the code.

We highly recommend having a deeper look into how this library works by reading the hparams library documentation, the parameters description and figures 4 and 5 in the paper before trying to run Efficient-VDVAE.

We have heavily tested the robustness and stability of our approach, so changing the model/optimization hyper-parameters for memory load reduction should not introduce any drastic instabilities as to make the model untrainable. That is of course as long as the changes don't negate the important stability points we describe in the paper.

Training the Efficient-VDVAE

To run Efficient-VDVAE in Torch:

cd efficient_vdvae_torch  
# Set the hyper-parameters in "hparams.cfg" file  
# Set "NUM_GPUS_PER_NODE" in "train.sh" file  
sh train.sh  

To run Efficient-VDVAE in JAX:

cd efficient_vdvae_jax  
# Set the hyper-parameters in "hparams.cfg" file  
python train.py  

If you want to run the model with less GPUs than available on the hardware, for example 2 GPUs out of 8:

CUDA_VISIBLE_DEVICES=0,1 sh train.sh  # For torch  
CUDA_VISIBLE_DEVICES=0,1 python train.py  # For JAX  

Models automatically create checkpoints during training. To resume a model from its last checkpoint, set its <run.name> in hparams.cfg file and re-run the same training commands.

Since training commands will save the hparams of the defined run in the .cfg file. If trying to restart a pre-existing run (by re-using its name in hparams.cfg), we provide a convenience script for resetting saved runs:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
sh reset.sh <run.name>  # <run.name> is the first field in hparams.cfg  

Note:

  • To make things easier for new users, we provide example hparams.cfg files that can be used under the egs folder. Detailed description of the role of each parameter is also inside hparams.cfg.
  • Hparams in egs are to be viewed only as guiding examples, they are not meant to be exactly similar to pre -trained checkpoints or experiments done in the paper.
  • While the example hparams under the naming convention ..._baseline.cfg are not exactly the hparams of C2 models in the paper (pre-trained checkpoints), they are easier to design models that achieve the same performance and can be treated as equivalents to C2 models.

Monitoring the training process

While writing this codebase, we put extra emphasis on verbosity and logging. Aside from the printed logs on terminal (during training), you can monitor the training progress and keep track of useful metrics using Tensorboard:

# While outside efficient_vdvae_torch or efficient_vdvae_jax  
# Run outside the docker container
tensorboard --logdir . --port <port_id> --reload_multifile True  

In the browser, navigate to localhost:<port_id> to visualize all saved metrics.

If Tensorboard is not installed (outside the docker container):

pip install --upgrade tensorboard

Inference with the Efficient-VDVAE

Efficient-VDVAE support multiple inference modes:

  • "reconstruction": Encodes then decodes the test set images and computes test NLL and SSIM.
  • "generation": Generates random images from the prior distribution. Randomness is controlled by the run.seed parameter.
  • "div_stats": Pre-computes the average KL divergence stats used to determine turned-off variates (refer to section 7 of the paper). Note: This mode needs to be run before "encoding" mode and before trying to do masked "reconstruction" (Refer to hparams.cfg for a detailed description).
  • "encoding": Extracts the latent distribution from the inference model, pruned to the quantile defined by synthesis.variates_masks_quantile parameter. This latent distribution is usable in downstream tasks.

To run the inference:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
# Set the inference mode in "logs-<run.name>/hparams-<run.name>.cfg"  
# Set the same <run.name> in "hparams.cfg"  
python synthesize.py  

Notes:

  • Since training a model with a name <run.name> will save that configuration under logs-<run.name>/hparams-<run.name>.cfg for reproducibility and error reduction. Any changes that one wants to make during inference time need to be applied on the saved hparams file (logs-<run.name>/hparams-<run.name>.cfg) instead of the main file hparams.cfg.
  • The torch implementation currently doesn't support multi-GPU inference. The JAX implementation does.

Potential TODOs

  • Make data loaders Out-Of-Core (OOC) in Pytorch
  • Make data loaders Out-Of-Core (OOC) in JAX
  • Update pre-trained model checkpoints
  • Add Fréchet-Inception Distance (FID) and Inception Score (IS) as measures for sample quality performance.
  • Improve the format of the encoded dataset used in downstream tasks (output of encoding mode, if there is a need)
  • Write a decoding mode API (if needed).

Bibtex

If you happen to use this codebase, please cite our paper:

@article{hazami2022efficient,
  title={Efficient-VDVAE: Less is more},
  author={Hazami, Louay and Mama, Rayhane and Thurairatnam, Ragavan},
  journal={arXiv preprint arXiv:2203.13751},
  year={2022}
}
Owner
Rayhane Mama
- If it seems impossible, then it's worth doing.
Rayhane Mama
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022