Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Overview

Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy, CVPR'21.

Usage

This project uses Python >= 3.7.3. After setting up your virtual environment, please install the required python libraries through:

pip install -r requirements.txt

Code is formatted with Black (PEP8) using a pre-commit hook. To configure it, run:

pre-commit install

Data format

Similarly to researchers from Monash University, this project processes events through the HDF5 data format. Details about the structure of these files can be found in datasets/tools/.

Inference

Download our pre-trained models from here.

Our HDF5 version of sequences from the Event Camera Dataset can also be downloaded from here for evaluation purposes.

To estimate optical flow from the input events:

python eval_flow.py 
   

   

 

To perform image reconstruction from the input events:

python eval_reconstruction.py 
   

   

 

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, dataset).

Training

Our framework can be trained using any event camera dataset. However, if you are interested in using our training data, you can download it from here. The datasets are expected at datasets/data/, but this location can be modified in the configuration files.

To train an image reconstruction and optical flow model, you need to adapt the training settings in configs/train_reconstruction.yml. Here, you can choose the training dataset, the number of input events, the neural networks to be used (EV-FlowNet or FireFlowNet for optical flow; E2VID or FireNet for image reconstruction), the number of epochs, the optimizer and learning rate, etc. To start the training from scratch, run:

python train_reconstruction.py

Alternatively, if you have a model that you would like to keep training from, you can use

python train_reconstruction.py --prev_model 
   

   

This is handy if, for instance, you just want to train the image reconstruction model and use a pre-trained optical flow network. For this, you can set train_flow: False in configs/train_reconstruction.yml, and run:

python train_reconstruction.py --prev_model 
   

   

If you just want to train an optical flow network, adapt configs/train_flow.yml, and run:

python train_flow.py

Note that we use MLflow to keep track of all the experiments.

Citations

If you use this library in an academic context, please cite the following:

@article{paredes2020back,
  title={Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy},
  author={Paredes-Vall{\'e}s, Federico and de Croon, Guido C. H. E.},
  journal={arXiv preprint arXiv:2009.08283},
  year={2020}
}

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
TU Delft
TU Delft - MAVLab
TU Delft
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022