Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

Related tags

Deep Learningdsl
Overview

DSL

Project page: https://sites.google.com/view/dsl-ram-lab/

Monocular Direct Sparse Localization in a Prior 3D Surfel Map

Authors: Haoyang Ye, Huaiyang Huang, and Ming Liu from RAM-LAB.

Paper and Video

Related publications:

@inproceedings{ye2020monocular,
  title={Monocular direct sparse localization in a prior 3d surfel map},
  author={Ye, Haoyang and Huang, Huaiyang and Liu, Ming},
  booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={8892--8898},
  year={2020},
  organization={IEEE}
}
@inproceedings{ye20213d,
  title={3D Surfel Map-Aided Visual Relocalization with Learned Descriptors},
  author={Ye, Haoyang and Huang, Huaiyang and Hutter, Marco and Sandy, Timothy and Liu, Ming},
  booktitle={2021 International Conference on Robotics and Automation (ICRA)},
  pages={5574-5581},
  year={2021},
  organization={IEEE}
}

Video: https://www.youtube.com/watch?v=LTihCBGcURo

Dependency

  1. Pangolin.
  2. CUDA.
  3. Ceres-solver.
  4. PCL, the default version accompanying by ROS.
  5. OpenCV, the default version accompanying by ROS.

Build

  1. git submodule update --init --recursive
  2. mkdir build && cd build
  3. cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
  4. make -j8

Example

The sample config file can be downloaded from this link.

To run the example:

[path_to_build]/src/dsl_main --path "[path_to_dataset]/left_pinhole"

Preparing Your Own Data

  1. Collect LiDAR and camera data.
  2. Build LiDAR map and obtain LiDAR poses (the poses are not necessary).
  3. Pre-process LiDAR map to make the [path_to_dataset]/*.pcd map file contains normal_x, normal_y, normal_z fields (downsample & normal estimation).
  4. Extract and undistort images into [path_to_dataset]/images.
  5. Set the first camera pose to initial_pose and other camera parameters in [path_to_dataset]/config.yaml.

Note

This implementation of DSL takes Ceres Solver as backend, which is different from the the implementation of the original paper with DSO-backend. This leads to different performance, i.e., speed and accuracy, compared to the reported results.

Credits

This work is inspired from several open-source projects, such as DSO, DSM, Elastic-Fusion, SuperPoint, DBoW2, NetVlad, LIO-mapping and etc.

Licence

The source code is released under GPL-3.0.

Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021