Annealed Flow Transport Monte Carlo

Overview

Annealed Flow Transport Monte Carlo

Open source implementation accompanying ICML 2021 paper

by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud Doucet.

The release contains implementations of

  • Annealed Flow Transport Monte Carlo (AFT), this paper.
  • Sequential Monte Carlo samplers (SMC), Del Moral et al (2006).
  • Variational inference with Normalizing Flows (VI), Rezende and Mohamed (2015).

This implementation of AFT is based on Algorithm 2 in the paper. See https://arxiv.org/abs/2102.07501 for more details.

Installation

The code uses Python 3. We recommend using pip install -e . which makes an editable install. A reliable way to do this is within a virtual environment.

virtualenv -p python3.9 ~/venv/annealed_flow_transport
source ~/venv/annealed_flow_transport/bin/activate
pip install -e .

A GPU is highly recommended. To use one you will need to install JAX with CUDA support. For example:

pip install --upgrade jax jaxlib==0.1.68+cuda111 -f
https://storage.googleapis.com/jax-releases/jax_releases.html

The CUDA version will need to match your GPU drivers. See the JAX documentation for more discussion.

To run the unit tests use the following command:

python -m pytest

Usage

The entry point to the code is main.py taking a config file as an argument. As an example from the base directory the following command runs a simple one dimensional toy example:

python main.py --config=configs/single_normal.py

This example anneals between two one dimensional normal distributions with the same scale and two different locations using AFT. The script should print a sequence of steps and return a log normalizing constant estimate.

The config files use the ConfigDict from ml_collections to specify all details of the desired experiment. For example: the algorithm, the MCMC kernel, and the base distribution and target distribution. More examples can be found in the configs directory.

We have not open sourced code for writing results to disk. The function train.run_experiments called from main.py returns a NamedDict containing a summary of results that could be caught and recorded if required.

License information

The code is licensed under the Apache 2.0 license, which can be found in full in the LICENSE file.

We have released a pickle model parameters file for the VAE example which is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), Full text is found at https://creativecommons.org/licenses/by/4.0/legalcode.

Giving Credit

If you use this code in your work, please cite the following paper.

@InProceedings{AnnealedFlowTransport2021,
  title={Annealed Flow Transport Monte Carlo},
  author={Michael Arbel and Alexander G. D. G. Matthews and Arnaud Doucet},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning},
  series = {Proceedings of Machine Learning Research},
  year={2021},
  month = {18--24 Jul}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022