Annealed Flow Transport Monte Carlo

Overview

Annealed Flow Transport Monte Carlo

Open source implementation accompanying ICML 2021 paper

by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud Doucet.

The release contains implementations of

  • Annealed Flow Transport Monte Carlo (AFT), this paper.
  • Sequential Monte Carlo samplers (SMC), Del Moral et al (2006).
  • Variational inference with Normalizing Flows (VI), Rezende and Mohamed (2015).

This implementation of AFT is based on Algorithm 2 in the paper. See https://arxiv.org/abs/2102.07501 for more details.

Installation

The code uses Python 3. We recommend using pip install -e . which makes an editable install. A reliable way to do this is within a virtual environment.

virtualenv -p python3.9 ~/venv/annealed_flow_transport
source ~/venv/annealed_flow_transport/bin/activate
pip install -e .

A GPU is highly recommended. To use one you will need to install JAX with CUDA support. For example:

pip install --upgrade jax jaxlib==0.1.68+cuda111 -f
https://storage.googleapis.com/jax-releases/jax_releases.html

The CUDA version will need to match your GPU drivers. See the JAX documentation for more discussion.

To run the unit tests use the following command:

python -m pytest

Usage

The entry point to the code is main.py taking a config file as an argument. As an example from the base directory the following command runs a simple one dimensional toy example:

python main.py --config=configs/single_normal.py

This example anneals between two one dimensional normal distributions with the same scale and two different locations using AFT. The script should print a sequence of steps and return a log normalizing constant estimate.

The config files use the ConfigDict from ml_collections to specify all details of the desired experiment. For example: the algorithm, the MCMC kernel, and the base distribution and target distribution. More examples can be found in the configs directory.

We have not open sourced code for writing results to disk. The function train.run_experiments called from main.py returns a NamedDict containing a summary of results that could be caught and recorded if required.

License information

The code is licensed under the Apache 2.0 license, which can be found in full in the LICENSE file.

We have released a pickle model parameters file for the VAE example which is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), Full text is found at https://creativecommons.org/licenses/by/4.0/legalcode.

Giving Credit

If you use this code in your work, please cite the following paper.

@InProceedings{AnnealedFlowTransport2021,
  title={Annealed Flow Transport Monte Carlo},
  author={Michael Arbel and Alexander G. D. G. Matthews and Arnaud Doucet},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning},
  series = {Proceedings of Machine Learning Research},
  year={2021},
  month = {18--24 Jul}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023