《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Overview

Dual-Resolution Correspondence Network

Dual-Resolution Correspondence Network, NeurIPS 2020

Dependency

All dependencies are included in asset/dualrcnet.yml. You need to install conda first, and then run

conda env create --file asset/dualrcnet.yml 

To activate the environment, run

conda activate dualrcnet

Preparing data

We train our model on MegaDepth dataset. To prepare for the data, you need to download the MegaDepth SfM models from the MegaDepth website and download training_pairs.txt and validation_pairs.txt from this link. Then place both training_pairs.txt and validation_pairs.txt files under the downloaded directory MegaDepth_v1_SfM.

Training

After downloading the training data, run

python train.py --training_file path/to/training_pairs.txt --validation_file path/to/validation_pairs.txt --image_path path/to/MegaDepth_v1_SfM

Pre-trained model

We also provide our pre-trained model. You can download dualrc-net.pth.tar from this link and place it under the directory trained_models.

Evaluation on HPatches

The dataset can be downloaded from HPatches repo. You need to download HPatches full sequences.
After downloading the dataset, then:

  1. Browse to HPatches/
  2. Run python eval_hpatches.py --checkpoint path/to/model --root path/to/parent/directory/of/hpatches_sequences. This will generate a text file which stores the result in current directory.
  3. Open draw_graph.py. Change relevent path accordingly and run the script to draw the result.

We provide results of DualRC-Net alongside with results of other methods in directory cache-top.

Evaluation on InLoc

In order to run the InLoc evaluation, you first need to clone the InLoc demo repo, and download and compile all the required depedencies. Then:

  1. Browse to inloc/.
  2. Run python eval_inloc_extract.py adjusting the checkpoint and experiment name. This will generate a series of matches files in the inloc/matches/ directory that then need to be fed to the InLoc evaluation Matlab code.
  3. Modify the inloc/eval_inloc_compute_poses.m file provided to indicate the path of the InLoc demo repo, and the name of the experiment (the particular directory name inside inloc/matches/), and run it using Matlab.
  4. Use the inloc/eval_inloc_generate_plot.m file to plot the results from shortlist file generated in the previous stage: /your_path_to/InLoc_demo_old/experiment_name/shortlist_densePV.mat. Precomputed shortlist files are provided in inloc/shortlist.

Evaluation on Aachen Day-Night

In order to run the Aachen Day-Night evaluation, you first need to clone the Visualization benchmark repo, and download and compile all the required depedencies (note that you'll need to compile Colmap if you have not done so yet). Then:

  1. Browse to aachen_day_and_night/.
  2. Run python eval_aachen_extract.py adjusting the checkpoint and experiment name.
  3. Copy the eval_aachen_reconstruct.py file to visuallocalizationbenchmark/local_feature_evaluation and run it in the following way:
python eval_aachen_reconstruct.py 
	--dataset_path /path_to_aachen/aachen 
	--colmap_path /local/colmap/build/src/exe
	--method_name experiment_name
  1. Upload the file /path_to_aachen/aachen/Aachen_eval_[experiment_name].txt to https://www.visuallocalization.net/ to get the results on this benchmark.

BibTex

If you use this code, please cite our paper

@inproceedings{li20dualrc,
 author		= {Xinghui Li and Kai Han and Shuda Li and Victor Prisacariu},
 title   	= {Dual-Resolution Correspondence Networks},
 booktitle 	= {Conference on Neural Information Processing Systems (NeurIPS)},
 year    	= {2020},
}

Acknowledgement

Our code is based on the wonderful code provided by NCNet, Sparse-NCNet and ANC-Net.

TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Namish Khanna 40 Oct 11, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022