DRIFT is a tool for Diachronic Analysis of Scientific Literature.

Overview

Logo

GitHub license GitHub stars GitHub forks GitHub issues

Open in Streamlit arXiv


About

DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes: Training and Analysis. Currently, the application supports customizable training of diachronic word embeddings with the TWEC model. The application supports a variety of analysis methods to monitor trends and patterns of development in scientific literature:

  1. Word Cloud
  2. Productivity/Frequency Plot
  3. Acceleration Plot
  4. Semantic Drift
  5. Tracking Clusters
  6. Acceleration Heatmap
  7. Track Trends with Similarity
  8. Keyword Visualisation
  9. LDA Topic Modelling

NOTE: The online demo is hosted using Streamlit sharing. This is a single-instance single-process deployment, accessible to all the visitors publicly (avoid sharing sensitive information on the demo). Hence, it is highly recommended to use your own independent local deployment of the application for a seamless and private experience. One can alternatively fork this repository and host it using Streamlit sharing.

We would love to know about any issues found on this repository. Please submit an issue for any query, or contact us here. If you use this application in your work, you can cite this repository and the paper here.


Setup

Clone the repository:

git clone https://github.com/rajaswa/DRIFT.git
cd DRIFT

Install the requirements:

make install_req

Data

The dataset we have used for our demo, and the analysis in the paper was scraped using the arXiv API (see script). We scraped papers from the cs.CL subject. This dataset is available here.

The user can upload their own dataset to the DRIFT application. The unprocessed dataset should be present in the following format (as a JSON file):

{
   <year_1>:[
      <paper_1>,
      <paper_2>,
      ...
   ],
   <year_2>:[
      <paper_1>,
      <paper_2>,
      ...
   ],
   ...,
   <year_m>:[
      <paper_1>,
      <paper_2>,
      ...
   ],
}

where year_x is a string (e.g., "1998"), and paper_x is a dictionary. An example is given below:

{
   "url":"http://arxiv.org/abs/cs/9809020v1",
   "date":"1998-09-15 23:49:32+00:00",
   "title":"Linear Segmentation and Segment Significance",
   "authors":[
      "Min-Yen Kan",
      "Judith L. Klavans",
      "Kathleen R. McKeown"
   ],
   "abstract":"We present a new method for discovering a segmental discourse structure of a\ndocument while categorizing segment function. We demonstrate how retrieval of\nnoun phrases and pronominal forms, along with a zero-sum weighting scheme,\ndetermines topicalized segmentation. Futhermore, we use term distribution to\naid in identifying the role that the segment performs in the document. Finally,\nwe present results of evaluation in terms of precision and recall which surpass\nearlier approaches.",
   "journal ref":"Proceedings of 6th International Workshop of Very Large Corpora\n  (WVLC-6), Montreal, Quebec, Canada: Aug. 1998. pp. 197-205",
   "category":"cs.CL"
}

The only important key is "abstract", which has the raw text. The user can name this key differently. See the Training section below for more details.


Usage

Launch the app

To launch the app, run the following command from the terminal:

streamlit run app.py

Train Mode

Preprocesing

The preprocessing stage takes a JSON file structured as shown in the Data section. They key for raw text is provided on which preprocessing takes place. During the preprocessing of the text, year-wise text files are created in a desired directory. During the preprocessing:

  • All html tags are removed from the text.
  • Contractions are replaced (e.g. 'don't' is converted to 'do not')
  • Punctuations, non-ascii characters, stopwords are removed.
  • All verbs are lemmatized.

After this, each processed text is stored in the respective year file separated by a new-line, along with all the data in a single file as compass.txt

Training

word_cloud_usage

The training mode uses the path where the processed text files are stored, and trains the TWEC model on the given text. The TWEC model trains a Word2Vec model on compass.txt and then the respective time-slices are trained on this model to get corresponding word vectors. In the sidebar, we provide several options like - whether to use Skipgram over CBOW, number of dynamic iterations for training, number of static iterations for training, negative sampling, etc. After training, we store the models at the specified path, which are used later in the analysis.

Analysis Mode

Word Cloud

word_cloud_usage

A word cloud, or tag cloud, is a textual data visualization which allows anyone to see in a single glance the words which have the highest frequency within a given body of text. Word clouds are typically used as a tool for processing, analyzing and disseminating qualitative sentiment data.

References:

Productivity/Frequency Plot

prod_freq_usage

Our main reference for this method is this paper. In short, this paper uses normalized term frequency and term producitvity as their measures.

  • Term Frequency: This is the normalized frequency of a given term in a given year.
  • Term Productivity: This is a measure of the ability of the concept to produce new multi-word terms. In our case we use bigrams. For each year y and single-word term t, and associated n multi-word terms m, the productivity is given by the entropy:

prod_plot_1

prod_plot_2

Based on these two measures, they hypothesize three kinds of terms:

  • Growing Terms: Those which have increasing frequency and productivity in the recent years.
  • Consolidated Terms: Those that are growing in frequency, but not in productivity.
  • Terms in Decline: Those which have reached an upper bound of productivity and are being used less in terms of frequency.

Then, they perform clustering of the terms based on their frequency and productivity curves over the years to test their hypothesis. They find that the clusters formed show similar trends as expected.

NOTE: They also evaluate quality of their clusters using pseudo-labels, but we do not use any automated labels here. They also try with and without double-counting multi-word terms, but we stick to double-counting. They suggest it is more explanable.

Acceleration Plot

acceleration_plot_usage

This plot is based on the word-pair acceleration over time. Our inspiration for this method is this paper. Acceleration is a metric which calculates how quickly the word embeddings for a pair of word get close together or farther apart. If they are getting closer together, it means these two terms have started appearing more frequently in similar contexts, which leads to similar embeddings. In the paper, it is described as:

acc_plot_1

acc_plot_2

Below, we display the top few pairs between the given start and end year in dataframe, then one can select years and then select word-pairs in the plot parameters expander. A reduced dimension plot is displayed.

NOTE: They suggest using skip-gram method over CBOW for the model. They use t-SNE representation to view the embeddings. But their way of aligning the embeddings is different. They also use some stability measure to find the best Word2Vec model. The also use Word2Phrase which we are planning to add soon.

Semantic Drift

semantic_drift_usage

This plot represents the change in meaning of a word over time. This shift is represented on a 2-dimensional representation of the embedding space. To find the drift of a word, we calculate the distance between the embeddings of the word in the final year and in the initial year. We find the drift for all words and sort them in descending order to find the most drifted words. We give an option to use one of two distance metrics: Euclidean Distance and Cosine Distance.

sem_drift_1

sem_drift_2

We plot top-K (sim.) most similar words around the two representations of the selected word.

In the Plot Parameters expander, the user can select the range of years over which the drift will be computed. He/She can also select the dimensionality reduction method for plotting the embeddings.

Below the graph, we provide a list of most drifted words (from the top-K keywords). The user can also choose a custom word.

Tracking Clusters

track_clusters_usage

Word meanings change over time. They come closer or drift apart. In a certain year, words are clumped together, i.e., they belong to one cluster. But over time, clusters can break into two/coalesce together to form one. Unlike the previous module which tracks movement of one word at a time, here, we track the movement of clusters.

We plot the formed clusters for all the years lying in the selected range of years. NOTE: We give an option to use one of two libraries for clustering: sklearn or faiss. faiss' KMeans implementation is around 10 times faster than sklearn's.

Acceleration Heatmap

acceleration_heatmap_usage

This plot is based on the word-pair acceleration over time. Our inspiration for this method is this paper. Acceleration is a metric which calculates how quickly the word embeddings for a pair of word get close together or farther apart. If they are getting closer together, it means these two terms have started appearing more frequently in similar contexts, which leads to similar embeddings. In the paper, it is described as:

acc_hm_1

acc_hm_2

For all the selected keywords, we display a heatmap, where the brightness of the colour determines the value of the acceleration between that pair, i.e., the brightness is directly proportional to the acceleration value.

NOTE: They suggest using skip-gram method over CBOW for the model.

Track Trends with Similarity

track_trends_usage

In this method, we wish to chart the trajectory of a word/topic from year 1 to year 2.

To accomplish this, we allow the user to pick a word from year 1. At the same time, we ask the user to provide the desired stride. We search for the most similar word in the next stride years. We keep doing this iteratively till we reach year 2, updating the word at each step.

The user has to select a word and click on Generate Dataframe. This gives a list of most similar words in the next stride years. The user can now iteratively select the next word from the drop-down till the final year is reached.

Keyword Visualisation

keyword_viz_usage

Here, we use the YAKE Keyword Extraction method to extract keywords. You can read more about YAKE here.

In our code, we use an open source implementation of YAKE.

NOTE: Yake returns scores which are indirectly proportional to the keyword importance. Hence, we do the following to report the final scores:

keyword_viz

LDA Topic Modelling

lda_usage

Latent Dirichlet Allocation is a generative probabilistic model for an assortment of documents, generally used for topic modelling and extraction. LDA clusters the text data into imaginary topics.

Every topic can be represented as a probability distribution over ngrams and every document can be represented as a probability distribution over these generated topics.

We train LDA on a corpus where each document contains the abstracts of a particular year. We express every year as a probability distribution of topics.

In the first bar graph, we show how a year can be decomposed into topics. The graphs below the first one show a decomposition of the relevant topics.

Citation

You can cite our work as:

@misc{sharma2021drift,
      title={DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature}, 
      author={Abheesht Sharma and Gunjan Chhablani and Harshit Pandey and Rajaswa Patil},
      year={2021},
      eprint={2107.01198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

OR

Sharma, A., Chhablani, G., Pandey, H., & Patil, R. (2021). DRIFT: A Toolkit for Diachronic Analysis of Scientific Literature.
Comments
  • Add script for arranging anthology data

    Add script for arranging anthology data

    • Reading XML files from here
    • Data stored in the form of nested dictionaries Format: publisher ---> (month, url, booktitle, year ---> [papers]) paper ---> (author, abstract, ...other text elements)

    Issues:

    • Most conferences have data for very few years. Mistake in the code? Or lack of uniformity in the XML files?
    • Keep "year" at the top of the hierarchy.
    opened by abheesht17 3
  • Script for Clustering Word Embeddings

    Script for Clustering Word Embeddings

    • Use K-Means for clustering the diachronic word embeddings.
    • Rough Sketch:
      • The class can have multiple functions: train, predict, store, visualisation, etc.
      • The function(s) will take as input word vectors from a particular timestamp. They will also take as input parameters of K-Means like number of clusters, etc.
      • Add functionality for visualisation.
      • Return the centroids and the cluster to which the words belong.
    opened by abheesht17 2
  • LDA Topic Modelling error

    LDA Topic Modelling error

    When choosing the LDA Topic Modelling section , the following message appears : ValueError: list.remove(x): x not in list Traceback: File "c:\users\doub2420.virtualenvs\drift-qengzvvy\lib\site-packages\streamlit\script_runner.py", line 337, in run_script exec(code, module.dict) File "C:\drift\app.py", line 1726, in year_paths.remove(os.path.join(vars["data_path"], "compass.txt"))

    What would that mean ?

    Thanks !

    opened by doubianimehdi 1
  • Changes to Productivity Plot

    Changes to Productivity Plot

    1. Check if cluster labels are more or less correct, otherwise we will remove/change the cluster table.
    2. Formatting changes for cluster table might be required
    3. Labels in dataframe should be named
    opened by harsh4799 0
  • Stop Words Custom list and Remove digits not transform it to english numerals

    Stop Words Custom list and Remove digits not transform it to english numerals

    Hi,

    I would like to have an option to use custom stop words and also to not have digits transformed into english numerals (thousand, hundred , and so on ...) because it doesn't help with the purpose of tracking trends or analyzing the abstracts.

    Thank you !

    opened by doubianimehdi 0
Releases(v0.1.0)
Owner
Rajaswa Patil
Rajaswa Patil
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022