Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Overview

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms

This repository contains implementations of various off-policy multi-agent reinforcement learning (MARL) algorithms.

Authors: Akash Velu and Chao Yu

Algorithms supported:

  • MADDPG (MLP and RNN)
  • MATD3 (MLP and RNN)
  • QMIX (MLP and RNN)
  • VDN (MLP and RNN)

Environments supported:

1. Usage

WARNING #1: by default all experiments assume a shared policy by all agents i.e. there is one neural network shared by all agents

WARNING #2: only QMIX and MADDPG are thoroughly tested; however,our VDN and MATD3 implementations make small modifications to QMIX and MADDPG, respectively. We display results using our implementation here.

All core code is located within the offpolicy folder. The algorithms/ subfolder contains algorithm-specific code for all methods. RMADDPG and RMATD3 refer to RNN implementationso of MADDPG and MATD3, and mQMIX and mVDN refer to MLP implementations of QMIX and VDN. We additionally support prioritized experience replay (PER).

  • The envs/ subfolder contains environment wrapper implementations for the MPEs and SMAC.

  • Code to perform training rollouts and policy updates are contained within the runner/ folder - there is a runner for each environment.

  • Executable scripts for training with default hyperparameters can be found in the scripts/ folder. The files are named in the following manner: train_algo_environment.sh. Within each file, the map name (in the case of SMAC and the MPEs) can be altered.

  • Python training scripts for each environment can be found in the scripts/train/ folder.

  • The config.py file contains relevant hyperparameter and env settings. Most hyperparameters are defaulted to the ones used in the paper; however, please refer to the appendix for a full list of hyperparameters used.

2. Installation

Here we give an example installation on CUDA == 10.1. For non-GPU & other CUDA version installation, please refer to the PyTorch website.

# create conda environment
conda create -n marl python==3.6.1
conda activate marl
pip install torch==1.5.1+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
# install on-policy package
cd on-policy
pip install -e .

Even though we provide requirement.txt, it may have redundancy. We recommend that the user try to install other required packages by running the code and finding which required package hasn't installed yet.

2.1 Install StarCraftII 4.10

unzip SC2.4.10.zip
# password is iagreetotheeula
echo "export SC2PATH=~/StarCraftII/" > ~/.bashrc

2.2 Install MPE

# install this package first
pip install seaborn

There are 3 Cooperative scenarios in MPE:

  • simple_spread
  • simple_speaker_listener, which is 'Comm' scenario in paper
  • simple_reference

3.Train

Here we use train_mpe_maddpg.sh as an example:

cd offpolicy/scripts
chmod +x ./train_mpe_maddpg.sh
./train_mpe_maddpg.sh

Local results are stored in subfold scripts/results. Note that we use Weights & Bias as the default visualization platform; to use Weights & Bias, please register and login to the platform first. More instructions for using Weights&Bias can be found in the official documentation. Adding the --use_wandb in command line or in the .sh file will use Tensorboard instead of Weights & Biases.

4. Results

Results for the performance of RMADDPG and QMIX on the Particle Envs and QMIX in SMAC are depicted here. These results are obtained using a normal (not prioitized) replay buffer.

Owner
This is a benchmark of popular multi-agent reinforcement learning algorithms & environments
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022