[NeurIPS'21] Projected GANs Converge Faster

Overview

[Project] [PDF] [Supplementary] [Talk]

This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster"

by Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021NEURIPS,
  author         = {Axel Sauer and Kashyap Chitta and Jens M{\"{u}}ller and Andreas Geiger},
  title          = {Projected GANs Converge Faster},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year           = {2021},
}

ToDos

  • Initial code release
  • Providing pretrained models
  • Easy-to-use colab
  • StyleGAN3 support

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate pg
  • The StyleGAN2 generator relies on custom CUDA kernels, which are compiled on the fly. Hence you need:
    • CUDA toolkit 11.1 or later.
    • GCC 7 or later compilers. Recommended GCC version depends on CUDA version, see for example CUDA 11.4 system requirements.
    • If you run into problems when setting up for the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN repo. When using the FastGAN generator you will not need the custom kernels.

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run for example

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You can get the datasets we used in our paper at their respective websites:

CLEVR, FFHQ, Cityscapes, LSUN, AFHQ, Landscape.

Training

Training your own PG on LSUN church using 8 GPUs:

python train.py --outdir=./training-runs/ --cfg=fastgan --data=./data/pokemon256.zip \
  --gpus=8 --batch=64 --mirror=1 --snap=50 --batch-gpu=8 --kimg=10000

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. If you use fewer GPUs, the training loop will automatically accumulate gradients, until the overall batch size is reached.

If you want to use the StyleGAN2 generator, use --cfg=stylegan2. Samples and metrics are saved in outdir. To monitor the training progress, you can inspect fid50k_full.json or run tensorboard in training-runs.

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=1.0 --seeds=10-15 \
  --network=PATH_TO_NETWORK_PKL

and

python gen_video.py --output=lerp.mp4 --trunc=1.0 --seeds=0-31 --grid=4x2 \
  --network=PATH_TO_NETWORK_PKL

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

Using PG in your own project

Our implementation is modular, so it is straightforward to use PG in your own codebase. Simply copy the pg_modules folder to your project. Then, to get the projected multi-scale discriminator, run

from pg_modules.discriminator import ProjectedDiscriminator
D = ProjectedDiscriminator()

The only thing you still need to do is to make sure that the feature network is not trained, i.e., explicitly set

D.feature_network.requires_grad_(False)

in your training loop.

Acknowledgments

Our codebase build and extends the awesome StyleGAN2-ADA repo and StyleGAN3 repo, both by Karras et al.

Furthermore, we use parts of the code of FastGAN and MiDas.

《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022