Invert and perturb GAN images for test-time ensembling

Overview

GAN Ensembling

Project Page | Paper | Bibtex

Ensembling with Deep Generative Views.
Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhang
CVPR 2021

Prerequisites

  • Linux
  • Python 3
  • NVIDIA GPU + CUDA CuDNN

Table of Contents:

  1. Colab - run a limited demo version without local installation
  2. Setup - download required resources
  3. Quickstart - short demonstration code snippet
  4. Notebooks - jupyter notebooks for visualization
  5. Pipeline - details on full pipeline

We project an input image into the latent space of a pre-trained GAN and perturb it slightly to obtain modifications of the input image. These alternative views from the GAN are ensembled at test-time, together with the original image, in a downstream classification task.

To synthesize deep generative views, we first align (Aligned Input) and reconstruct an image by finding the corresponding latent code in StyleGAN2 (GAN Reconstruction). We then investigate different approaches to produce image variations using the GAN, such as style-mixing on fine layers (Style-mix Fine), which predominantly changes color, or coarse layers (Style-mix Coarse), which changes pose.

Colab

This Colab Notebook demonstrates the basic latent code perturbation and classification procedure in a simplified setting on the aligned cat dataset.

Setup

  • Clone this repo:
git clone https://github.com/chail/gan-ensembling.git
cd gan-ensembling

An example of the directory organization is below:

dataset/celebahq/
	images/images/
		000004.png
		000009.png
		000014.png
		...
	latents/
	latents_idinvert/
dataset/cars/
	devkit/
		cars_meta.mat
		cars_test_annos.mat
		cars_train_annos.mat
		...
	images/images/
		00001.jpg
		00002.jpg
		00003.jpg
		...
	latents/
dataset/catface/
	images/
	latents/
dataset/cifar10/
	cifar-10-batches-py/
	latents/

Quickstart

Once the datasets and precomputed resources are downloaded, the following code snippet demonstrates how to perturb GAN images. Additional examples are contained in notebooks/demo.ipynb.

import data
from networks import domain_generator

dataset_name = 'celebahq'
generator_name = 'stylegan2'
attribute_name = 'Smiling'
val_transform = data.get_transform(dataset_name, 'imval')
dset = data.get_dataset(dataset_name, 'val', attribute_name, load_w=True, transform=val_transform)
generator = domain_generator.define_generator(generator_name, dataset_name)

index = 100
original_image = dset[index][0][None].cuda()
latent = dset[index][1][None].cuda()
gan_reconstruction = generator.decode(latent)
mix_latent = generator.seed2w(n=4, seed=0)
perturbed_im = generator.perturb_stylemix(latent, 'fine', mix_latent, n=4)

Notebooks

Important: First, set up symlinks required for notebooks: bash notebooks/setup_notebooks.sh, and add the conda environment to jupyter kernels: python -m ipykernel install --user --name gan-ensembling.

The provided notebooks are:

  1. notebooks/demo.ipynb: basic usage example
  2. notebooks/evaluate_ensemble.ipynb: plot classification test accuracy as a function of ensemble weight
  3. notebooks/plot_precomputed_evaluations.ipynb: notebook to generate figures in paper

Full Pipeline

The full pipeline contains three main parts:

  1. optimize latent codes
  2. train classifiers
  3. evaluate the ensemble of GAN-generated images.

Examples for each step of the pipeline are contained in the following scripts:

bash scripts/optimize_latent/examples.sh
bash scripts/train_classifier/examples.sh
bash scripts/eval_ensemble/examples.sh

To add to the pipeline:

  • Data: in the data/ directory, add the dataset in data/__init__.py and create the dataset class and transformation functions. See data/data_*.py for examples.
  • Generator: modify networks/domain_generators.py to add the generator in domain_generators.define_generator. The perturbation ranges for each dataset and generator are specified in networks/perturb_settings.py.
  • Classifier: modify networks/domain_classifiers.py to add the classifier in domain_classifiers.define_classifier

Acknowledgements

We thank the authors of these repositories:

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chai2021ensembling,
  title={Ensembling with Deep Generative Views.},
  author={Chai, Lucy and Zhu, Jun-Yan and Shechtman, Eli and Isola, Phillip and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
 }
Owner
Lucy Chai
Lucy Chai
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022