AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

Related tags

Deep Learningaugmix
Overview

AugMix

Introduction

We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented images, which results in increased robustness and improved uncertainty calibration. AugMix does not require tuning to work correctly, as with random cropping or CutOut, and thus enables plug-and-play data augmentation. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance by more than half in some cases. With AugMix, we obtain state-of-the-art on ImageNet-C, ImageNet-P and in uncertainty estimation when the train and test distribution do not match.

For more details please see our ICLR 2020 paper.

Pseudocode

Contents

This directory includes a reference implementation in NumPy of the augmentation method used in AugMix in augment_and_mix.py. The full AugMix method also adds a Jensen-Shanon Divergence consistency loss to enforce consistent predictions between two different augmentations of the input image and the clean image itself.

We also include PyTorch re-implementations of AugMix on both CIFAR-10/100 and ImageNet in cifar.py and imagenet.py respectively, which both support training and evaluation on CIFAR-10/100-C and ImageNet-C.

Requirements

  • numpy>=1.15.0
  • Pillow>=6.1.0
  • torch==1.2.0
  • torchvision==0.2.2

Setup

  1. Install PyTorch and other required python libraries with:

    pip install -r requirements.txt
    
  2. Download CIFAR-10-C and CIFAR-100-C datasets with:

    mkdir -p ./data/cifar
    curl -O https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
    curl -O https://zenodo.org/record/3555552/files/CIFAR-100-C.tar
    tar -xvf CIFAR-100-C.tar -C data/cifar/
    tar -xvf CIFAR-10-C.tar -C data/cifar/
    
  3. Download ImageNet-C with:

    mkdir -p ./data/imagenet/imagenet-c
    curl -O https://zenodo.org/record/2235448/files/blur.tar
    curl -O https://zenodo.org/record/2235448/files/digital.tar
    curl -O https://zenodo.org/record/2235448/files/noise.tar
    curl -O https://zenodo.org/record/2235448/files/weather.tar
    tar -xvf blur.tar -C data/imagenet/imagenet-c
    tar -xvf digital.tar -C data/imagenet/imagenet-c
    tar -xvf noise.tar -C data/imagenet/imagenet-c
    tar -xvf weather.tar -C data/imagenet/imagenet-c
    

Usage

The Jensen-Shannon Divergence loss term may be disabled for faster training at the cost of slightly lower performance by adding the flag --no-jsd.

Training recipes used in our paper:

WRN: python cifar.py

AllConv: python cifar.py -m allconv

ResNeXt: python cifar.py -m resnext -e 200

DenseNet: python cifar.py -m densenet -e 200 -wd 0.0001

ResNet-50: python imagenet.py <path/to/imagenet> <path/to/imagenet-c>

Pretrained weights

Weights for a ResNet-50 ImageNet classifier trained with AugMix for 180 epochs are available here.

This model has a 65.3 mean Corruption Error (mCE) and a 77.53% top-1 accuracy on clean ImageNet data.

Citation

If you find this useful for your work, please consider citing

@article{hendrycks2020augmix,
  title={{AugMix}: A Simple Data Processing Method to Improve Robustness and Uncertainty},
  author={Hendrycks, Dan and Mu, Norman and Cubuk, Ekin D. and Zoph, Barret and Gilmer, Justin and Lakshminarayanan, Balaji},
  journal={Proceedings of the International Conference on Learning Representations (ICLR)},
  year={2020}
}
Owner
Google Research
Google Research
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022