Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Related tags

Deep Learninghps
Overview

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors
Vladimir Guzov*, Aymen Mir*, Torsten Sattler , Gerard Pons-Moll
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2021

(* joint first authors with equal contribution)

HPS

HPS jointly estimates the full 3D human pose and location of a subject within large 3D scenes, using only wearable sensors. Left: subject wearing IMUs and a head mounted camera. Right: using the camera, HPS localizes the human in a pre-built map of the scene (bottom left). The top row shows the split images of the real and estimated virtual camera

Getting Started:

Download the scenes, predefined vertices, all the IMU .txt files and .MVNX files, the video files and the camera localization .json files

Change the corresponding global variables denoting locations of these files in global_vars.py

Preprocessing

Create conda environment

conda env create -f hps_env.yml

Run Preprocessing code.

python preprocess/preprocess.py --file_name seq_name 

Run Initialization code.

python preprocess/Initialization.py --file_name seq_name 

Compute sitting frames

python preprocess/sit_frames.py --file_name seq_name 

Compute scene normals

python preprocess/scene_normals.py 

HPS

Optimization

Create a config file. A sample file is found in configs folder

Run the optimization code as follows

python main --config configs/sample.txt

Citation

If you find our code useful, please consider citing our paper

@inproceedings{HPS,
    title = {Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors },
    author = {Guzov, Vladimir and Mir, Aymen and Sattler, Torsten and Pons-Moll, Gerard},
    booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {jun},
    organization = {{IEEE}},
    year = {2021},
}

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE.

Acknowledgements

The smplpytorch code comes from Gul Varol's repository

The ChamferDistancePytorch codes from Thibault Groueix's repository

Owner
Aymen Mir
Aymen Mir
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022