SGoLAM - Simultaneous Goal Localization and Mapping

Related tags

Deep LearningSGoLAM
Overview

SGoLAM - Simultaneous Goal Localization and Mapping

PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and Mapping [Talk Video]. Our method does not employ any training of neural networks, but shows competent performance in the MultiON benchmark. In fact, we outperform the winning entry by a large margin in terms of success rate.

alt text

We encourage future participants of the MultiON challenge to use our code as a starting point for implementing more sophisticated navigation agents. If you have any questions on running SGoLAM please leave an issue.

Notes on Installation

To run experiments locally/on a server, follow the 'bag of tricks' below:

  1. Please abide by the steps provided in the original MultiON repository. (Don't bother looking at other repositories!)
  2. Along the installation process, numerous dependency errors will occur. Don't look for other workarounds and just humbly install what is missing.
  3. For installing Pytorch and other CUDA dependencies, it seems like the following command works: conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch.
  4. By the way, habitat-lab installation is much easier than habitat-sim. You don't necessarily need to follow the instructions provided in the MultiON repository for habitat-lab. Just go directly to the habitat-lab repository and install habitat-lab. However, for habitat-sim, you must follow MultiON's directions; or a pile of bugs will occur.
  5. One python evaluate.py is run, a horrifying pile of dependency errors will occur. Now we will go over some of the prominent ones.
  6. To solve AttributeError: module 'attr' has no attribute 's', run pip uninstall attr and then run pip install attrs.
  7. To solve ModuleNotFoundError: No module named 'imageio', run pip install imageio-ffmpeg.
  8. To solve ImportError: ModuleNotFoundError: No module named 'magnum', run pip install build/deps/magnum-bindings/src/python.
  9. The last and most important 'trick' is to google errors. The Habitat team seems to be doing a great job answering GitHub issues. Probably someone has already ran into the error you are facing.
  10. If additional 'tricks' are found, feel free to share by appending to the list starting from here. `

Docker Sanity Check (Last Modified: 2021.03.26:20:11)

A number of commands to take for docker sanity check.

Login

First, login to the dockerhub repository. As our accounts don't support private repositories with multiple collaborators, we need to share a single ID. For the time being let's use my ID. Type the following command

docker login

Now one will be prompted a user ID and PW. Please type ID: esteshills PW: 82magnolia.

Pull Image

I have already built an image ready for preliminary submission. It can be easily pulled using the following command.

docker pull esteshills/multion_test:tagname

Run Evaluation

To make an evaluation for standard submission, run the following command. Make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running.

cd scripts/
./test_docker.sh

Playing around with Docker Images

One may want to further examine the docker image. Run the following command.

cd scripts/
./test_docker_bash.sh

Again, make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running. Note that the commands provided in the MultiON repository can be run inside the container. For example:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --agent-type no-map --run-type eval

In order to run other baselines, i) modify the checkpoint path in the .yaml file, ii) download the model checkpoint, iii) change the agent type.

Preventing Hassles with Docker (Last Modified: 2021.04.08:09:07)

Now we probably don't need to develop with docker. Just plug in your favorite agent following the instructions provided below.

Plug-and-Play New Agents

One can easily test new agents by providing the file name containing agent implementation. To implement a new agent, please refer to agents/example.py. To test a new agent and get evaluation results, run the following command (this is an example for the no_map baseline).

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill

In addition, one can change the number of episodes to be tested. However, this feature is only available in the annotated branch, as it requires a slight modification in the core habitat repository. Run the following command to change the number of episodes. While it will not produce any bugs in the main branch as well, the argument will have no effect.

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill --num_episodes 100

Plug-and-Play New Agents from Local Host

Running Agents

Suppose one has some implementations of navigation agents that are not yet pushed to agents/. These could be tested on-the-fly using a handy script provided in scripts. First, put all the agent implementations inside extern_agents/, similar to implementations in agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent.sh new_agent

Make sure the agents are located in the extern_agents/ folder. This way, there is no need to directly hassle with docker; docker is merely used as a black box for running evaluations.

Now suppose one needs to debug the agent in the docker environment. This could be done by running the following script; it will open bash with extern_agents/ mounted.

./scripts/test_docker_agent_bash.sh

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) provided.

./scripts/extern_eval.sh new_agent

Playing Agent Episodes with Video

Agent trajectories per episode can be visualized with the scripts in scripts/. Again, put all the agent implementations inside extern_agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent_video.sh new_agent 

Make sure the mount paths are set correctly inside ./scripts/test_docker_agent_video.sh.

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) and video save directory (in this case ./test_dir) provided.

./scripts/extern_eval_video.sh new_agent ./test_dir

Caveats

The original implementations assume two GPUs to be given. Therefore bugs may occur if only a single GPU is present. In this case do not run the docker scripts directly, as it will return errors. Instead, connect to a docker container with bash and first modify the baseline .yaml configuration so that it only uses a single GPU. Then, run the *_eval*.sh scripts. I am planning on remedying this issue with a similar plug-and-play fashion, but for the time being, stick to this procedure.

How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023