A Broader Picture of Random-walk Based Graph Embedding

Overview

Random-walk Embedding Framework

This repository is a reference implementation of the random-walk embedding framework as described in the paper:

A Broader Picture of Random-walk Based Graph Embedding.
Zexi Huang, Arlei Silva, Ambuj Singh.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021.

The framework decomposes random-walk based graph embedding into three major components: random-walk process, similarity function, and embedding algorithm. By tuning the components, it not only covers many existing approaches such as DeepWalk but naturally motivates novel ones that have shown superior performance on certain downstream tasks.

Usage

Example

To use the framework with default settings to embed the BlogCatalog network:
python src/embedding.py --graph graph/blogcatalog.edges --embeddings emb/blogcatalog.embeddings
where graph/blogcatalog.edges stores the input graph and emb/blogcatalog.embeddings is the target file for output embeddings.

Options

You can check out all the available options (framework components, Markov time parameters, graph types, etc.) with:
python src/embedding.py --help

Input Graph

The supported input graph format is a list of edges:

node1_id_int node2_id_int <weight_float, optional>

where node ids are should be consecutive integers starting from 1. The graph is by default undirected and unweighted, which can be changed by setting appropriate flags.

Output Embeddings

The output embedding file has n lines where n is the number of nodes in the graph. Each line stores the learned embedding of the node with its id equal to the line number:

emb_dim1 emb_dim2 ... emb_dimd

Evaluating

Here, we show by examples how to evaluate and compare different settings of our framework on node classification, link prediction, and community detection tasks. Full evaluation options are can be found with:
python src/evaluating.py --help

Note that the results shown below may not be identical to those in the paper due to different random seeds, but the conclusions are the same.

Node Classification

Once we generate the embedding with the script in previous section, we can call
python src/evaluating.py --task node-classification --embeddings emb/blogcatalog.embeddings --training-ratio 0.5
to compute the Micro-F1 and Macro-F1 scores of the node classification.

The results for comparing Pointwise Mutual Information (PMI) and Autocovariance (AC) similarity metrics with the best Markov times and varying training ratios are as follows:

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
PMI Micro-F1 0.3503 0.3814 0.3993 0.4106 0.4179 0.4227 0.4255 0.4222 0.4228
(time=4) Macro-F1 0.2212 0.2451 0.2575 0.2669 0.2713 0.2772 0.2768 0.2689 0.2678
AC Micro-F1 0.3547 0.3697 0.3785 0.3837 0.3872 0.3906 0.3912 0.3927 0.3930
(time=5) Macro-F1 0.2137 0.2299 0.2371 0.2406 0.2405 0.2413 0.2385 0.2356 0.2352

Link Prediction

Prepare

To evaluate the embedding method on link prediction, we first have to remove a ratio of edges in the original graph:
python src/evaluating.py --task link-prediction --mode prepare --graph graph/blogcatalog.edges --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges

This takes the original graph graph/blogcatalog.edges as input and output the removed and remaining edges to graph/blogcatalog.removed-edges and graph/blogcatalog.remaining-edges.

Embed

Then, we embed based on the remaining edges of the network with the embedding script. For example:
python src/embedding.py --graph graph/blogcatalog.remaining-edges --embeddings emb/blogcatalog.residual-embeddings

Evaluate

Finally, we evaluate the performance of link prediction in terms of [email protected] based on the embeddings of the residual graph and the removed edges:
python src/evaluating.py --task link-prediction --mode evaluate --embeddings emb/blogcatalog.residual-embeddings --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges --k 1.0

The results for comparing PMI and autocovariance similarity metrics with the best Markov times and varying k are as follows:

k 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
PMI (time=1) 0.2958 0.2380 0.2068 0.1847 0.1678 0.1560 0.1464 0.1382 0.1315 0.1260
AC (time=3) 0.4213 0.3420 0.2982 0.2667 0.2434 0.2253 0.2112 0.2000 0.1893 0.1802

Community Detection

Assume the embeddings for the Airport network emb/airport.embeddings have been generated. The following computes the Normalized Mutual Information (NMI) between the ground-truth country communities and the k-means clustering of embeddings:
python src/evaluating.py --task community-detection --embeddings emb/airport.embeddings --communities graph/airport.country-labels

Citing

If you find our framework useful, please consider citing the following paper:

@inproceedings{random-walk-embedding,
author = {Huang, Zexi and Silva, Arlei and Singh, Ambuj},
 title = {A Broader Picture of Random-walk Based Graph Embedding},
 booktitle = {SIGKDD},
 year = {2021}
}
Owner
Zexi Huang
Zexi Huang
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021