TensorFlow 2 implementation of the Yahoo Open-NSFW model

Overview

ci License MIT 1.0

Introduction

Detecting Not-Suitable-For-Work (NSFW) images is a high demand task in computer vision. While there are many types of NSFW images, here we focus on the pornographic images.

The Yahoo Open-NSFW model originally developed with the Caffe framework has been a favourite choice, but the work is now discontinued and Caffe is also becoming less popular. Please see the description on the Yahoo project page for the context, definitions, and model training details.

This Open-NSFW 2 project provides a TensorFlow 2 implementation of the Yahoo model, with references to its previous third-party TensorFlow 1 implementation.

Installation

Python 3.7 or above is required. Tested for 3.7, 3.8, and 3.9.

The best way to install Open-NSFW 2 with its dependencies is from PyPI:

python3 -m pip install --upgrade opennsfw2

Alternatively, to obtain the latest version from this repository:

git clone [email protected]:bhky/opennsfw2.git
cd opennsfw2
python3 -m pip install .

Usage

import numpy as np
import opennsfw2 as n2
from PIL import Image

# Load and preprocess image.
image_path = "path/to/your/image.jpg"
pil_image = Image.open(image_path)
image = n2.preprocess_image(pil_image, n2.Preprocessing.YAHOO)
# The preprocessed image is a NumPy array of shape (224, 224, 3).

# Create the model.
# By default, this call will search for the pre-trained weights file from path:
# $HOME/.opennsfw2/weights/open_nsfw_weights.h5
# If not exists, the file will be downloaded from this repository.
# The model is a `tf.keras.Model` object.
model = n2.make_open_nsfw_model()

# Make predictions.
inputs = np.expand_dims(image, axis=0)  # Add batch axis (for single image).
predictions = model.predict(inputs)

# The shape of predictions is (batch_size, 2).
# Each row gives [sfw_probability, nsfw_probability] of an input image, e.g.:
sfw_probability, nsfw_probability = predictions[0]

Alternatively, the end-to-end pipeline function can be used:

import opennsfw2 as n2

image_paths = [
    "path/to/your/image1.jpg",
    "path/to/your/image2.jpg",
    # ...
]

predictions = n2.predict(
    image_paths, batch_size=4, preprocessing=n2.Preprocessing.YAHOO
)

API

preprocess_image

Apply necessary preprocessing to the input image.

  • Parameters:
    • pil_image (PIL.Image): Input as a Pillow image.
    • preprocessing (Preprocessing enum, default Preprocessing.YAHOO): See preprocessing details.
  • Return:
    • NumPy array of shape (224, 224, 3).

Preprocessing

Enum class for preprocessing options.

  • Preprocessing.YAHOO
  • Preprocessing.SIMPLE

make_open_nsfw_model

Create an instance of the NSFW model, optionally with pre-trained weights from Yahoo.

  • Parameters:
    • input_shape (Tuple[int, int, int], default (224, 224, 3)): Input shape of the model, this should not be changed.
    • weights_path (Optional[str], default $HOME/.opennsfw/weights/open_nsfw_weights.h5): Path to the weights in HDF5 format to be loaded by the model. The weights file will be downloaded if not exists. Users can provide path if the default is not preferred. If None, no weights will be downloaded nor loaded to the model.
  • Return:
    • tf.keras.Model object.

predict

End-to-end pipeline function from input image paths to predictions.

  • Parameters:
    • image_paths (Sequence[str]): List of paths to input image files.
    • batch_size (int, default 32): Batch size to be used for model inference.
    • preprocessing: Same as that in preprocess_image.
    • weights_path: Same as that in make_open_nsfw_model.
  • Return:
    • NumPy array of shape (batch_size, 2), each row gives [sfw_probability, nsfw_probability] of an input image.

Preprocessing details

Options

This implementation provides the following preprocessing options.

  • YAHOO: The default option which was used in the original Yahoo's Caffe and the later TensorFlow 1 implementations. The key steps are:
    • Resize the input Pillow image to (256, 256).
    • Save the image as JPEG bytes and reload again to a NumPy image (this step is mysterious, but somehow it really makes a difference).
    • Crop the centre part of the NumPy image with size (224, 224).
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].
  • SIMPLE: A simpler and probably more intuitive preprocessing option is also provided, but note that the model output probabilities will be different. The key steps are:
    • Resize the input Pillow image to (224, 224).
    • Convert to a NumPy image.
    • Swap the colour channels to BGR.
    • Subtract the training dataset mean value of each channel: [104, 117, 123].

Comparison

Using 521 private images, the NSFW probabilities given by three different settings are compared:

  • TensorFlow 1 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with YAHOO preprocessing.
  • TensorFlow 2 implementation with SIMPLE preprocessing.

The following figure shows the result:

NSFW probabilities comparison

The current TensorFlow 2 implementation with YAHOO preprocessing can totally reproduce the well-tested TensorFlow 1 result, with small floating point errors only.

With SIMPLE preprocessing the results are different, where the model tends to give lower probabilities.

You might also like...
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

Comments
  • ERROR WITH NO ERROR

    ERROR WITH NO ERROR

    Hi, I don't understand what happened with opennsfw2 code. My installation is OK. I install Keras and Tensorflow 2.0 with CUDA but nothing, Any idea ? I attached a screenshot. Thank you to help me 0008_2022-09-10_17_heures_18

    opened by fog88 7
  • Which NSFW Area is this AI covering?

    Which NSFW Area is this AI covering?

    Hi,

    very cool project, I am looking for an AI, which can cover on the one side nudity, but doesn't judge sexy images and also bans traumatic images, like horror and the crazy things, like NSFW 4 things, is it possible with this AI?

    nsfw-chart

    I found this image online, which is your AI covering?

    Thanks!

    opened by Flori00123 5
  • small demo website

    small demo website

    would be nice to have a small website that allows users to demo the model instead of having to run it all, such as https://maybeshewill-cv.github.io/nsfw_classification/

    opened by DankMemeGuy 1
Releases(v0.10.2)
Owner
Bosco Yung
Machine Learning Engineer, Lecturer, Astrophysicist
Bosco Yung
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022