Open-AI's DALL-E for large scale training in mesh-tensorflow.

Overview

DALL-E in Mesh-Tensorflow [WIP]

Open-AI's DALL-E in Mesh-Tensorflow.

If this is similarly efficient to GPT-Neo, this repo should be able to train models up to, and larger than, the size of Open-AI's DALL-E (12B params).

No pretrained models... Yet.

Thanks to Ben Wang for the tf vae implementation as well as getting the mtf version working, and Aran Komatsuzaki for help building the mtf VAE and input pipeline.

Setup

git clone https://github.com/EleutherAI/GPTNeo
cd GPTNeo
pip3 install -r requirements.txt

Training Setup

Runs on TPUs, untested on GPUs but should work in theory. The example configs are designed to run on a TPU v3-32 pod.

To set up TPUs, sign up for Google Cloud Platform, and create a storage bucket.

Create your VM through a google shell (https://ssh.cloud.google.com/) with ctpu up --vm-only so that it can connect to your Google bucket and TPUs and setup the repo as above.

VAE pretraining

DALLE needs a pretrained VAE to compress images to tokens. To run the VAE pretraining, adjust the params in configs/vae_example.json to a glob path pointing to a dataset of jpgs, and adjust image size to the appropriate size.

  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg",
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg",
    "image_size": 32
  }

Once this is all set up, create your TPU, then run:

python train_vae_tf.py --tpu your_tpu_name --model vae_example

The training logs image tensors and loss values, to check progress, you can run:

tensorboard --logdir your_model_dir

Dataset Creation [DALL-E]

Once the VAE is pretrained, you can move on to DALL-E.

Currently we are training on a dummy dataset. A public, large-scale dataset for DALL-E is in the works. In the meantime, to generate some dummy data, run:

python src/data/create_tfrecords.py

This should download CIFAR-10, and generate some random captions to act as text inputs.

Custom datasets should be formatted in a folder, with a jsonl file in the root folder containing caption data and paths to the respective images, as follows:

Folder structure:

        data_folder
            jsonl_file
            folder_1
                img1
                img2
                ...
            folder_2
                img1
                img2
                ...
            ...

jsonl structure:
    {"image_path": folder_1/img1, "caption": "some words"}
    {"image_path": folder_2/img2, "caption": "more words"}
    ...

you can then use the create_paired_dataset function in src/data/create_tfrecords.py to encode the dataset into tfrecords for use in training.

Once the dataset is created, copy it over to your bucket with gsutil:

gsutil cp -r DALLE-tfrecords gs://neo-datasets/

And finally, run training with

python train_dalle.py --tpu your_tpu_name --model dalle_example

Config Guide

VAE:

{
  "model_type": "vae",
  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg", # glob path to training images
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg", # glob path to eval images
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, 
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000, # how often to save a checkpoint
  "iterations": 500, # number of batches to infeed to the tpu at a time. Must be < steps_per_checkpoint
  "train_steps": 100000, # total training steps
  "eval_steps": 0, # run evaluation for this many steps every steps_per_checkpoint
  "model_path": "gs://neo-models/vae_test2/", # directory in which to save the model
  "mesh_shape": "data:16,model:2", # mapping of processors to named dimensions - see mesh-tensorflow repo for more info
  "layout": "batch_dim:data", # which named dimensions of the model to split across the mesh - see mesh-tensorflow repo for more info
  "num_tokens": 512, # vocab size
  "dim": 512, 
  "hidden_dim": 64, # size of hidden dim
  "n_channels": 3, # number of input channels
  "bf_16": false, # if true, the model is trained with bfloat16 precision
  "lr": 0.001, # learning rate [by default learning rate starts at this value, then decays to 10% of this value over the course of the training]
  "num_layers": 3, # number of blocks in the encoder / decoder
  "train_gumbel_hard": true, # whether to use hard or soft gumbel_softmax
  "eval_gumbel_hard": true
}

DALL-E:

{
  "model_type": "dalle",
  "dataset": {
    "train_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords", # glob path to tfrecords data
    "eval_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords",
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, # see above
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000,
  "iterations": 500,
  "train_steps": 100000,
  "predict_steps": 0,
  "eval_steps": 0,
  "n_channels": 3,
  "bf_16": false,
  "lr": 0.001,
  "model_path": "gs://neo-models/dalle_test/",
  "mesh_shape": "data:16,model:2",
  "layout": "batch_dim:data",
  "n_embd": 512, # size of embedding dim
  "text_vocab_size": 50258, # vocabulary size of the text tokenizer
  "image_vocab_size": 512, # vocabulary size of the vae - should equal num_tokens above
  "text_seq_len": 256, # length of text inputs (all inputs longer / shorter will be truncated / padded)
  "n_layers": 6, 
  "n_heads": 4, # number of attention heads. For best performance, n_embd / n_heads should equal 128
  "vae_model": "vae_example" # path to or name of vae model config
}
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022