Advanced Signal Processing Notebooks and Tutorials

Overview

Advanced Digital Signal Processing
Notebooks and Tutorials

Prof. Dr. -Ing. Gerald Schuller
Jupyter Notebooks and Videos: Renato Profeta

Applied Media Systems Group
Technische Universität Ilmenau

Content

  • 01 Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Introduction
    • Quantization Error
    • Uniform Quantizers: Mir-Rise and Mid-Tread
    • Python Example: Uniform Quantizers
    • Python Example: Real-time Quantization Example
  • 02 Quantization - Signal to Noise Ratio (SNR):
    NBViewerBinderGoogle ColabYoutube

    • Signal to Noise Ratio (SNR)
    • SNR for Uniformly Distribution Signals
    • SNR for a Sine Wave
      • PDF of Time Series
  • 03 Quantization - Non-Uniform Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Companding
      • µ-LAw and A-Law
      • Python Example: µ-LAw
      • Python Example: Real-Time Mid-Tread, Mid-Rise, µ-Law
  • 04r Quantization - Revision: Histogram, PDFs, Numerical Integration
    NBViewerBinderGoogle ColabYoutube

    • Histograms
    • Probability Density Functions
    • Numerical Integration
      • Riemann Sum
      • Trapezoidal Rule
  • 04 Quantization - Lloyd-Max Quantizer
    NBViewerBinderGoogle ColabYoutube

    • Lloyd-Max Quantizer
    • Lloyd-Max Quantizer Examples
  • 05 Quantization - Vector Quantizer (VQ) and Linde-Buzo-Gray (LBG) Algorithm
    NBViewerBinderGoogle ColabYoutube

    • Vector Quantization
    • Linde-Buzo-Gray Algorithm
    • Python Examples: Vector Quantization in an Encoder and Decoder
      • Iron Maiden - The Number of the Beast Introduction
      • Iron Maiden - Aces High Introduction
  • 06 Sampling - Sampling a Discrete Time Signal
    NBViewerBinderGoogle ColabYoutube

    • Sampling Introduction
    • Sampling a Discrete Time Signal
      • Downsampling
      • Upsampling
    • Python Example: Live Spectrogram: Sampling, LP Filtering
  • 07a The z-Transform - Theory and Properties
    NBViewerBinderGoogle ColabYoutube

    • The z-Transform Definition
    • Properties of the z-Transform
      • Shift Property
      • Linearity
      • Convolution
    • z-Transform Example: Exponential Decaying Sequence
  • 07b Filters - FIR and IIR Filters
    NBViewerBinderGoogle ColabYoutube

    • Filters: Linear Time-Invariant Systems
    • Finite Impulse Response (FIR) Filters
    • Infinite Impulse Response (IIR) Filters
    • Filter Example: Exponential Decaying Signal
      • Computing the Resulting Frequency Response
      • The z-Plane
      • Impulse Response
  • 08 Filters and Noble Identities
    NBViewerBinderGoogle ColabYoutube

    • Filter Design
      • Linear Phase and Signal Delay
      • General Phase and Groud Delay
      • Magnitude
    • Multirate Noble Identities
    • Polyphase Vectors
    • Python Example: Noble Identities and Polyphase Vectors
  • 09 Allpass Filters and Frequency Warping
    NBViewerBinderGoogle ColabYoutube

    • Allpass Filters
      • Allpass Filter as Fractional Delay
      • IIR Fractional Delay Filter Design
      • Simple IIR Allpass Filters
    • Frequency Warping Introduction
    • Frequency Warping and Bark Scale
  • 10 Frequency Warping and Minimum Phase Filters
    NBViewerBinderGoogle ColabYoutube

    • Frequency Warping
    • Minimum Phase Filters
      • Python Example
      • Impulse Response
      • Frequency Response
  • 11 Complex Signals and Filters, Hilbert Transform
    NBViewerBinderGoogle ColabYoutube

    • Complex Signals and Filters
    • Hilbert Transformer
      • Python Example
      • Impulse Response
      • Frequency Response
    • Example for the Measurement of the (Instantaneous) Amplitude
  • 12 Wiener Filters
    NBViewerBinderGoogle ColabYoutube

    • Wiener Filters
      • Python Example for Denoising Speech
      • Scipy Wiener Filter Example: Iron Maiden - The Number of the Beast Speech Intro
  • 13 Matched Filters
    NBViewerBinderGoogle ColabYoutube

    • Matched Filters
      • Python Example: Closed Form Solution
      • Convolutional Neural Network Implementation: PyTorch
  • 14 Prediction
    NBViewerBinderGoogle ColabYoutube

    • Prediction
      • Wiener-Hopf Closed Form Solution
      • Encoder-Decoder System
      • Neural Network Implementation - PyTorch
    • Linear Predictive Coding (LPC)
    • Least Mean Squares (LMS) Algorithm
      • LMS with Quantizer

YouTube Playlist

Youtube

Requirements

Please check the following files at the 'binder' folder:

  • environment.yml
  • postBuild

Note

Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.

Owner
Guitars.AI
PhD Candidate at TU Ilmenau GUITAR INFORMATION RETRIEVAL
Guitars.AI
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022