Advanced Signal Processing Notebooks and Tutorials

Overview

Advanced Digital Signal Processing
Notebooks and Tutorials

Prof. Dr. -Ing. Gerald Schuller
Jupyter Notebooks and Videos: Renato Profeta

Applied Media Systems Group
Technische Universität Ilmenau

Content

  • 01 Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Introduction
    • Quantization Error
    • Uniform Quantizers: Mir-Rise and Mid-Tread
    • Python Example: Uniform Quantizers
    • Python Example: Real-time Quantization Example
  • 02 Quantization - Signal to Noise Ratio (SNR):
    NBViewerBinderGoogle ColabYoutube

    • Signal to Noise Ratio (SNR)
    • SNR for Uniformly Distribution Signals
    • SNR for a Sine Wave
      • PDF of Time Series
  • 03 Quantization - Non-Uniform Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Companding
      • µ-LAw and A-Law
      • Python Example: µ-LAw
      • Python Example: Real-Time Mid-Tread, Mid-Rise, µ-Law
  • 04r Quantization - Revision: Histogram, PDFs, Numerical Integration
    NBViewerBinderGoogle ColabYoutube

    • Histograms
    • Probability Density Functions
    • Numerical Integration
      • Riemann Sum
      • Trapezoidal Rule
  • 04 Quantization - Lloyd-Max Quantizer
    NBViewerBinderGoogle ColabYoutube

    • Lloyd-Max Quantizer
    • Lloyd-Max Quantizer Examples
  • 05 Quantization - Vector Quantizer (VQ) and Linde-Buzo-Gray (LBG) Algorithm
    NBViewerBinderGoogle ColabYoutube

    • Vector Quantization
    • Linde-Buzo-Gray Algorithm
    • Python Examples: Vector Quantization in an Encoder and Decoder
      • Iron Maiden - The Number of the Beast Introduction
      • Iron Maiden - Aces High Introduction
  • 06 Sampling - Sampling a Discrete Time Signal
    NBViewerBinderGoogle ColabYoutube

    • Sampling Introduction
    • Sampling a Discrete Time Signal
      • Downsampling
      • Upsampling
    • Python Example: Live Spectrogram: Sampling, LP Filtering
  • 07a The z-Transform - Theory and Properties
    NBViewerBinderGoogle ColabYoutube

    • The z-Transform Definition
    • Properties of the z-Transform
      • Shift Property
      • Linearity
      • Convolution
    • z-Transform Example: Exponential Decaying Sequence
  • 07b Filters - FIR and IIR Filters
    NBViewerBinderGoogle ColabYoutube

    • Filters: Linear Time-Invariant Systems
    • Finite Impulse Response (FIR) Filters
    • Infinite Impulse Response (IIR) Filters
    • Filter Example: Exponential Decaying Signal
      • Computing the Resulting Frequency Response
      • The z-Plane
      • Impulse Response
  • 08 Filters and Noble Identities
    NBViewerBinderGoogle ColabYoutube

    • Filter Design
      • Linear Phase and Signal Delay
      • General Phase and Groud Delay
      • Magnitude
    • Multirate Noble Identities
    • Polyphase Vectors
    • Python Example: Noble Identities and Polyphase Vectors
  • 09 Allpass Filters and Frequency Warping
    NBViewerBinderGoogle ColabYoutube

    • Allpass Filters
      • Allpass Filter as Fractional Delay
      • IIR Fractional Delay Filter Design
      • Simple IIR Allpass Filters
    • Frequency Warping Introduction
    • Frequency Warping and Bark Scale
  • 10 Frequency Warping and Minimum Phase Filters
    NBViewerBinderGoogle ColabYoutube

    • Frequency Warping
    • Minimum Phase Filters
      • Python Example
      • Impulse Response
      • Frequency Response
  • 11 Complex Signals and Filters, Hilbert Transform
    NBViewerBinderGoogle ColabYoutube

    • Complex Signals and Filters
    • Hilbert Transformer
      • Python Example
      • Impulse Response
      • Frequency Response
    • Example for the Measurement of the (Instantaneous) Amplitude
  • 12 Wiener Filters
    NBViewerBinderGoogle ColabYoutube

    • Wiener Filters
      • Python Example for Denoising Speech
      • Scipy Wiener Filter Example: Iron Maiden - The Number of the Beast Speech Intro
  • 13 Matched Filters
    NBViewerBinderGoogle ColabYoutube

    • Matched Filters
      • Python Example: Closed Form Solution
      • Convolutional Neural Network Implementation: PyTorch
  • 14 Prediction
    NBViewerBinderGoogle ColabYoutube

    • Prediction
      • Wiener-Hopf Closed Form Solution
      • Encoder-Decoder System
      • Neural Network Implementation - PyTorch
    • Linear Predictive Coding (LPC)
    • Least Mean Squares (LMS) Algorithm
      • LMS with Quantizer

YouTube Playlist

Youtube

Requirements

Please check the following files at the 'binder' folder:

  • environment.yml
  • postBuild

Note

Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.

Owner
Guitars.AI
PhD Candidate at TU Ilmenau GUITAR INFORMATION RETRIEVAL
Guitars.AI
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023