The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

Related tags

Deep Learningsdr
Overview

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

This code corresponds to the reproducibility paper: "Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study" and all results gathered from the paper are generated using the code.

Environment setup:

  • This project is implemented and tested only for python version 3.6.12, other python versions are not tested and can not ensure the full run of the results.

First please install the required packages:

pip3 install -r requirements.txt

Query&Eval generation:

First please clone the TAR repository using the command

git clone https://github.com/CLEF-TAR/tar.git

The data that's been used include the following files:

For 2017:
tar/tree/master/2017-TAR/training/qrels/qrel_content_train
tar/tree/master/2017-TAR/testing/qrels/qrel_content_test.txt
Please cat these two files together to make 2017_full.txt

For 2018:
tar/tree/master/2018-TAR/Task2/Training/qrels/full.train.content.2018.qrels
tar/tree/master/2018-TAR/Task2/Testing/qrels/full.test.content.2018.qrels
Please cat these two files together to make 2018_full.txt

For 2019:
tar/tree/master/2019-TAR/Task2/Training/Intervention/qrels/full.train.int.content.2019.qrels
tar/tree/master/2019-TAR/Task2/Testing/Intervention/qrels/full.test.int.content.2019.qrels
Please cat these two files together to make 2019_full.txt, and also 2019_test.txt (note for 2019 these two will be the same)

Then you can generate query and evaluation files by:

For snigle:
python3 topic_query_generation.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

For multiple:
python3 topic_query_generation_multiple.py --input_qrel qrel_file_for_training+testing --input_test_qrel qrel_file_for_testing --DATA_DIR output_dir

Please note: you need to generate for each year and put it in a separate folder, not the overall one.

Collection generation:

For BOW collection generation, the following command is needed

python3 gather_all_pids.py --filenames 2017_full.txt+2018_full.txt+2019_full.txt --output_dir collection/pid_dir --chunks n
python3 collection_gathering.py --filename yourpidsfile --email [email protected] --output output_collection
python3 collection_processing.py --input_collection acquired_collection_file --output_collection processed_file(default is weighted1_bow.jsonl)

Then for BOC collection generation:

  • First ensure to check Quickumls to gather umls data.
  • Second ensure to register on NCBO to get api keys, and fill in these keys in ncbo_request_word.py
  • For BOC collection then, run the following command to generation boc_collection:
python3 ncbo_request_word.py --input_collection your_generated_bow_collection --num_workers for_multi_procesing --generated_collection output_dir_ncbo
cat output_dir/* > ncbo.tsv
python3 processing_uml.py --input_collection your_bow_collection --input_umls_dir your_output_umls_dir --num_workers for_multi_procesing
python3 processing_umls_word.py --input_collection your_generated_bow_collection --input_umls_dir your_output_umls_dir_from_last_step --output_file umls.tsv
python3 boc_extraction.py --input_collection bow_collection --input_ncbo_collection ncbo.tsv --input_umls_collection umls.tsv --output_collection processed_file(default is weighted1_boc.jsonl)

RQ1: Does the effectiveness of SDR generalise beyond the CLEF TAR 2017 dataset?

For RQ1, single seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search.sh 2017_single_data_dir all
bash search.sh 2018_single_data_dir test
bash search.sh 2019_single_data_dir test

to get the run_file of all three years single seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_single_data_dir all
bash evaluation_full.sh 2018_single_data_dir test
bash evaluation_full.sh 2019_single_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ2: What is the impact of using multiple seed studies collectively on the effectiveness of SDR?

For RQ2, multiple seed driven results are acquired for clef tar 2017, 2018, 2019, for this please run the following command.

bash search_multiple.sh 2017_multiple_data_dir all
bash search_multiple.sh 2018_multiple_data_dir test
bash search_multiple.sh 2019_multiple_data_dir test

to get the run_file of all three years multiple seed run_file with all methods.

Then evaluation by:

bash evaluation_full.sh 2017_multiple_data_dir all
bash evaluation_full.sh 2018_multiple_data_dir test
bash evaluation_full.sh 2019_multiple_data_dir test

to print out evaluation measures and also save evaluation measurement files in the corresponding eval folder

RQ3: To what extent do seed studies impact the ranking stability of single- and multi-SDR?

For this question, we need to use the results acquired from the last two steps, in which we can generate variability graphs by using the following command:

python3 graph_making/distribution_graph.py --year 2017 --type oracle 
python3 graph_making/distribution_graph.py --year 2018 --type oracle 
python3 graph_making/distribution_graph.py --year 2019 --type oracle 

to get distribution graphs of the three years.

Generated run files:

Run files are generated and stored in here, feel free to download for verification or futher research needs.

Example:
run_files/2017/all: 2017 single seed results file
run_files/2017/multiple: 2017 multiple seed results file

Owner
ielab
The Information Engineering Lab
ielab
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022