A Python package for time series augmentation

Overview

tsaug

Build Status Documentation Status Coverage Status PyPI Downloads Code style: black

tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to connect multiple augmenters into a pipeline.

See https://tsaug.readthedocs.io complete documentation.

Installation

Prerequisites: Python 3.5 or later.

It is recommended to install the most recent stable release of tsaug from PyPI.

pip install tsaug

Alternatively, you could install from source code. This will give you the latest, but unstable, version of tsaug.

git clone https://github.com/arundo/tsaug.git
cd tsaug/
git checkout develop
pip install ./

Examples

A first-time user may start with two examples:

Examples of every individual augmenter can be found here

For full references of implemented augmentation methods, please refer to References.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Please see Contributing for more details.

License

tsaug is licensed under the Apache License 2.0. See the LICENSE file for details.

Comments
  • How to cite this repo?

    How to cite this repo?

    Basically the title. I used this awesome repo and I would like to cite this repo in my paper. How to do it. If you could provide a bibtex entry that will be great

    question 
    opened by kowshikthopalli 2
  • Default _Augmentor arguments will raise an error

    Default _Augmentor arguments will raise an error

    While working on #1 I found that the default args for initializing an _Augmentor object could lead to the code trying to call None when expecting a function.

    See: https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L5 https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L6

    and

    https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L47

    I know that it's not intended to be initialized without an augmenter function, function, but I was wondering if you want to explicitly prevent an error here.

    Or is something else supposed to be happening?

    bug 
    opened by roycoding 1
  • can't find the deepad python package

    can't find the deepad python package

    In the quickstart notebook https://github.com/arundo/tsaug/blob/master/docs/quickstart.ipynb from deepad.visualization import plot where can you find the deepad package to install?

    opened by xsqian 1
  • Missing function calls in documentation

    Missing function calls in documentation

    Hi!

    I noticed that documentation is actually missing few important notes.

    For instance, first example contains such snippet:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> plot(X, Y)
    

    and shows a chart which suggests that it is immediately rendered after calling plot function.

    In configurations I've seen and worked on, plot function does not render any chart immediately. Instead it returns Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]. This means that we need to take first element of returned tuple and call .show() on it, so this example should rather be:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> figure, _ = plot(X, Y)
    >>> figure.show()
    

    I can create a push request with such corrections if you're open for contribution

    opened by 15bubbles 0
  • Static random augmentation across multiple time series

    Static random augmentation across multiple time series

    Hello,

    I have a use case where I apply temporal augmentation with the same random anchor across multiple time series within a segmented object. I.e., I want certain augmentations to vary across objects, but remain constant within objects.

    In TimeWarp, e.g., I've added an optional keyword argument (static_rand):

        def __init__(
             self,
             n_speed_change: int = 3,
             max_speed_ratio: Union[float, Tuple[float, float], List[float]] = 3.0,
             repeats: int = 1,
             prob: float = 1.0,
             seed: Optional[int] = _default_seed,
             static_rand: Optional[bool] = False
         ):
    

    which is used by:

             if self.static_rand:                                                                                                                      
                 anchor_values = rand.uniform(low=0.0, high=1.0, size=self.n_speed_change + 1)
                 anchor_values = np.tile(anchor_values, (N, 1))
             else:
                 anchor_values = rand.uniform(
                     low=0.0, high=1.0, size=(N, self.n_speed_change + 1)
                 )
    

    Thus, instead of having N time series with different random anchor_values, I generate N time series with the same anchor value.

    I use this approach with TimeWarp and Drift. Would this be of any interest as a PR, or does it sound too specific?

    Thanks for the nice library.

    opened by jgrss 0
  • _Augmenter should be exposed properly as tsaug.Augmenter

    _Augmenter should be exposed properly as tsaug.Augmenter

    Might be related to https://github.com/arundo/tsaug/issues/1

    In the current state of the package, the _Augmenter class is an internal class that should not be used outside of the package itself... but it's also the base class for all usable classes from tsaug. This makes it very weird to type "generic" functions outside of tsaug, e.g.

    # this should not appear in a normal Python code
    from tsaug._augmenters.base import _Augmenter
    
    def apply_transformation(aug: _Augmenter):
        ...
    

    The _Augmenter class should be exposed as tsaug.Augmenter so that it can be used for proper typing outside of the tsaug package.

    help wanted 
    opened by Holt59 0
  • Equivalence in transformation names

    Equivalence in transformation names

    Hello

    I'm very interested to use and apply Tsaug library in my personal project.

    I have read the paper "Data Augmentation ofWearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks" and I'm quite confused about the name of the transformations.

    What are the equivalent in TSAUG library for the transformations Jittering, Scaling, rotation, permutation, MagWarp mentioned in this paper?

    Also, I have read the blog "https://www.arundo.com/arundo_tech_blog/tsaug-an-open-source-python-package-for-time-series-augmentation", and I didn´t find the equivalent for RandomMagnify, RandomJitter, etc.

    Could you help me with these doubts.

    Best regards

    Oscar

    question 
    opened by ogreyesp 1
  • ValueError: The numbers of series in X and Y are different.

    ValueError: The numbers of series in X and Y are different.

    The shape of X is (54, 337) and the shape of y is (54,). But I am getting error. I am using the following code

    from tsaug import TimeWarp, Crop, Quantize, Drift, Reverse
    my_augmenter = (
        TimeWarp() * 5  # random time warping 5 times in parallel
        + Crop(size=300)  # random crop subsequences with length 300
        + Quantize(n_levels=[10, 20, 30])  # random quantize to 10-, 20-, or 30- level sets
        + Drift(max_drift=(0.1, 0.5)) @ 0.8  # with 80% probability, random drift the signal up to 10% - 50%
        + Reverse() @ 0.5  # with 50% probability, reverse the sequence
    )
    data, labels = my_augmenter.augment(data, labels)
    
    question 
    opened by talhaanwarch 3
  • How to augment multi_variate time series data?

    How to augment multi_variate time series data?

    I noticed that while augmenting multi-variate time series data, augmented data is concatenated on 0 axes, instead of being added to a new axis ie third axis. Let suppose data shape is (18,1000), after augmentation it turns to be (72,1000), but i believe it should be (4,18,1000). simply reshaping data.reshape(4,18,1000) resolve the problem or not?

    question 
    opened by talhaanwarch 2
Releases(v0.2.1)
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022