A Python package for time series augmentation

Overview

tsaug

Build Status Documentation Status Coverage Status PyPI Downloads Code style: black

tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to connect multiple augmenters into a pipeline.

See https://tsaug.readthedocs.io complete documentation.

Installation

Prerequisites: Python 3.5 or later.

It is recommended to install the most recent stable release of tsaug from PyPI.

pip install tsaug

Alternatively, you could install from source code. This will give you the latest, but unstable, version of tsaug.

git clone https://github.com/arundo/tsaug.git
cd tsaug/
git checkout develop
pip install ./

Examples

A first-time user may start with two examples:

Examples of every individual augmenter can be found here

For full references of implemented augmentation methods, please refer to References.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Please see Contributing for more details.

License

tsaug is licensed under the Apache License 2.0. See the LICENSE file for details.

Comments
  • How to cite this repo?

    How to cite this repo?

    Basically the title. I used this awesome repo and I would like to cite this repo in my paper. How to do it. If you could provide a bibtex entry that will be great

    question 
    opened by kowshikthopalli 2
  • Default _Augmentor arguments will raise an error

    Default _Augmentor arguments will raise an error

    While working on #1 I found that the default args for initializing an _Augmentor object could lead to the code trying to call None when expecting a function.

    See: https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L5 https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L6

    and

    https://github.com/arundo/tsaug/blob/ebf1955664991fe51f038a5cc8506f1bfc849d91/src/tsaug/augmentor.py#L47

    I know that it's not intended to be initialized without an augmenter function, function, but I was wondering if you want to explicitly prevent an error here.

    Or is something else supposed to be happening?

    bug 
    opened by roycoding 1
  • can't find the deepad python package

    can't find the deepad python package

    In the quickstart notebook https://github.com/arundo/tsaug/blob/master/docs/quickstart.ipynb from deepad.visualization import plot where can you find the deepad package to install?

    opened by xsqian 1
  • Missing function calls in documentation

    Missing function calls in documentation

    Hi!

    I noticed that documentation is actually missing few important notes.

    For instance, first example contains such snippet:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> plot(X, Y)
    

    and shows a chart which suggests that it is immediately rendered after calling plot function.

    In configurations I've seen and worked on, plot function does not render any chart immediately. Instead it returns Tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]. This means that we need to take first element of returned tuple and call .show() on it, so this example should rather be:

    >>> import numpy as np
    >>> X = np.load("./X.npy")
    >>> Y = np.load("./Y.npy")
    >>> from tsaug.visualization import plot
    >>> figure, _ = plot(X, Y)
    >>> figure.show()
    

    I can create a push request with such corrections if you're open for contribution

    opened by 15bubbles 0
  • Static random augmentation across multiple time series

    Static random augmentation across multiple time series

    Hello,

    I have a use case where I apply temporal augmentation with the same random anchor across multiple time series within a segmented object. I.e., I want certain augmentations to vary across objects, but remain constant within objects.

    In TimeWarp, e.g., I've added an optional keyword argument (static_rand):

        def __init__(
             self,
             n_speed_change: int = 3,
             max_speed_ratio: Union[float, Tuple[float, float], List[float]] = 3.0,
             repeats: int = 1,
             prob: float = 1.0,
             seed: Optional[int] = _default_seed,
             static_rand: Optional[bool] = False
         ):
    

    which is used by:

             if self.static_rand:                                                                                                                      
                 anchor_values = rand.uniform(low=0.0, high=1.0, size=self.n_speed_change + 1)
                 anchor_values = np.tile(anchor_values, (N, 1))
             else:
                 anchor_values = rand.uniform(
                     low=0.0, high=1.0, size=(N, self.n_speed_change + 1)
                 )
    

    Thus, instead of having N time series with different random anchor_values, I generate N time series with the same anchor value.

    I use this approach with TimeWarp and Drift. Would this be of any interest as a PR, or does it sound too specific?

    Thanks for the nice library.

    opened by jgrss 0
  • _Augmenter should be exposed properly as tsaug.Augmenter

    _Augmenter should be exposed properly as tsaug.Augmenter

    Might be related to https://github.com/arundo/tsaug/issues/1

    In the current state of the package, the _Augmenter class is an internal class that should not be used outside of the package itself... but it's also the base class for all usable classes from tsaug. This makes it very weird to type "generic" functions outside of tsaug, e.g.

    # this should not appear in a normal Python code
    from tsaug._augmenters.base import _Augmenter
    
    def apply_transformation(aug: _Augmenter):
        ...
    

    The _Augmenter class should be exposed as tsaug.Augmenter so that it can be used for proper typing outside of the tsaug package.

    help wanted 
    opened by Holt59 0
  • Equivalence in transformation names

    Equivalence in transformation names

    Hello

    I'm very interested to use and apply Tsaug library in my personal project.

    I have read the paper "Data Augmentation ofWearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks" and I'm quite confused about the name of the transformations.

    What are the equivalent in TSAUG library for the transformations Jittering, Scaling, rotation, permutation, MagWarp mentioned in this paper?

    Also, I have read the blog "https://www.arundo.com/arundo_tech_blog/tsaug-an-open-source-python-package-for-time-series-augmentation", and I didn´t find the equivalent for RandomMagnify, RandomJitter, etc.

    Could you help me with these doubts.

    Best regards

    Oscar

    question 
    opened by ogreyesp 1
  • ValueError: The numbers of series in X and Y are different.

    ValueError: The numbers of series in X and Y are different.

    The shape of X is (54, 337) and the shape of y is (54,). But I am getting error. I am using the following code

    from tsaug import TimeWarp, Crop, Quantize, Drift, Reverse
    my_augmenter = (
        TimeWarp() * 5  # random time warping 5 times in parallel
        + Crop(size=300)  # random crop subsequences with length 300
        + Quantize(n_levels=[10, 20, 30])  # random quantize to 10-, 20-, or 30- level sets
        + Drift(max_drift=(0.1, 0.5)) @ 0.8  # with 80% probability, random drift the signal up to 10% - 50%
        + Reverse() @ 0.5  # with 50% probability, reverse the sequence
    )
    data, labels = my_augmenter.augment(data, labels)
    
    question 
    opened by talhaanwarch 3
  • How to augment multi_variate time series data?

    How to augment multi_variate time series data?

    I noticed that while augmenting multi-variate time series data, augmented data is concatenated on 0 axes, instead of being added to a new axis ie third axis. Let suppose data shape is (18,1000), after augmentation it turns to be (72,1000), but i believe it should be (4,18,1000). simply reshaping data.reshape(4,18,1000) resolve the problem or not?

    question 
    opened by talhaanwarch 2
Releases(v0.2.1)
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023