Manifold Alignment for Semantically Aligned Style Transfer

Related tags

Deep LearningMAST
Overview

Manifold Alignment for Semantically Aligned Style Transfer

[Paper]

res1 GUI Demo

Getting Started

MAST has been tested on CentOS 7.6 with python >= 3.6. It supports both GPU and CPU inference. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/NJUHuoJing/MAST.git

prepare the checkpoints:

cd MAST
chmod 777 scripts/prepare_data.sh
scripts/prepare_data.sh

Install the requirements:

conda create -n mast-env python=3.6
conda activate mast-env
pip install -r requirements.txt

# If you want to use post smoothing as the same as PhotoWCT, then install the requirements below;
# You can also just skip it to use fast post smoothing, remember to change cfg.TEST.PHOTOREALISTIC.FAST_SMOOTHING=true
pip install -U setuptools
pip install cupy
pip install pynvrtc

Running the Demo

Artistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=false in configs/config.yaml. Then use the script test_artistic.py to generate the artistic stylized image by following the command below:

# not use seg
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default

# use --content_seg_path and --style_seg_path to user edited style transfer
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default --content_seg_path data/default/content_segmentation/4.png --style_seg_path data/default/style_segmentation/4.png --seg_type labelme --resize 512

Photo-realistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=true in configs/config.yaml. Then use the script test_photorealistic.py to generate the photo-realistic stylized image by following the command below:

# not use seg
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --resize 512

# or use --content_seg_path and --style_seg_path to user edited style transfer
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --content_seg_path data/photo_data/content_segmentation/in1.png --style_seg_path data/photo_data/style_segmentation/tar1.png --seg_type dpst --resize 512

GUI For Artistic style transfer and User Editing

We provide a gui for user-controllable artistic image stylization. Just use the command below to run test_gui.py

python test_gui.py --cfg_path configs/config.yaml

Features

  1. You can use different colors to control the style transfer in different semantic areas.
  2. The button Expand and Expand num respectively control whether to expand the selected semantic area and the degree of expansion.

See the gif demo for more details.

Google Colab

If you do not have a suitable environment to run this project then you could give Google Colab a try. It allows you to run the project in the cloud, free of charge. You may try our Colab demo using the notebook we have prepared: Colab Demo

Citation

@inproceedings{huo2021manifold,
    author = {Jing Huo and Shiyin Jin and Wenbin Li and Jing Wu and Yu-Kun Lai and Yinghuan Shi and Yang Gao},
    title = {Manifold Alignment for Semantically Aligned Style Transfer},
    booktitle = {IEEE International Conference on Computer Vision},
    pages     = {14861-14869},
    year = {2021}
}

References

  • The post smoothing module is borrowed from PhotoWCT
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023