PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Related tags

Deep LearningABL
Overview

Anti-Backdoor Learning

PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Python 3.6 Pytorch 1.10 CUDA 10.0 License CC BY-NC

Check the unlearning effect of ABL with 1% isolated backdoor images:

An Example with Pretrained Model

Pretrained backdoored model: gridTrigger WRN-16-1, target label 0, pretrained weights: ./weight/backdoored_model.

Run the following command will show the effect of unlearning:

$ python quick_unlearning_demo.py 

The training logs are shown in below. We can clearly see how effective and efficient of our ABL, with using only 1% (i.e. 500 examples) isolated backdoored images, can successfully decrease the ASR of backdoored WRN-16-1 from 99.98% to near 0% (almost no drop of CA) on CIFAR-10.

Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
0,82.77777777777777,99.9888888888889,0.9145596397187975,0.0007119161817762587
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
1,82.97777777777777,47.13333333333333,0.9546798907385932,4.189897534688313
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
2,82.46666666666667,5.766666666666667,1.034722186088562,15.361101960923937
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
3,82.15555555555555,1.5222222222222221,1.0855470676422119,22.175255742390952
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
4,82.0111111111111,0.7111111111111111,1.1183592330084906,26.754894670274524
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
5,81.86666666666666,0.4777777777777778,1.1441074348025853,30.429284422132703

The unlearning model will be saved at the path 'weight/ABL_results/ .tar'

Please carefully read the quick_unlearning_demo.py , then change the default parameters for your experiment.


Prepare Poisoning Data

We have provided a DatasetBD Class in data_loader.py for generating training set of different backdoor attacks.

The use of this code to create a poisoned data is look like this:

from data_loader import *
    if opt.load_fixed_data:
        # load the fixed poisoned data of numpy format, e.g. Dynamic, FC, DFST attacks etc. 
        # Note that the load data type is a pytorch tensor
        poisoned_data = np.load(opt.poisoned_data_path, allow_pickle=True)
        poisoned_data_loader = DataLoader(dataset=poisoned_data,
                                            batch_size=opt.batch_size,
                                            shuffle=True,
                                            )
    else:
        poisoned_data, poisoned_data_loader = get_backdoor_loader(opt)

    test_clean_loader, test_bad_loader = get_test_loader(opt)

However, for the other attacks such as Dynamic, DFTS, FC, etc. It is not easy to contain them into the get_backdoor_loader . So the much elegant way is to create a local fixed poisoning data of these attacks by using the demo code create_poisoned_data.py, and then load this poisoned data by set the opt.loader_fixed_data == True.

We provide a demo of how to create poisoning data of dynamic attack in the create_backdoor_data dictionary.

Please carefully read the create_poisoned_data.py and get_backdoor_loader, then change the parameters for your experiment.

ABL Stage One: Backdoor Isolation

To obtain the 1% isolation data and isolation model, you can easily run command:

$ python backdoor_isolation.py 

After that, you can get a isolation model and then use it to isolate 1% poisoned data of the lowest training loss. The 1% poisoned data will be saved in the path 'isolation_data' and 'weight/isolation_model' respectively.

Please check more details of our experimental settings in section 4 and Appendix A of paper, then change the parameters in config.py for your experiment.

ABL Stage Two: Backdoor Unlearning

With the 1% isolation backdoor set and a isolation model, we can then continue with the later training of unlearning by running the code:

$ python backdoor_unlearning.py 

Note that at this stage, the backdoor has already been learned by the isolation model. In order to further improve clean accuracy of isolation model, we finetuning the model some epochs before backdoor unlearning. If you want directly to see unlearning result, you can select to skip the finetuning of the isolation model by setting argument of opt.finetuning_ascent_model== False .

The final results of unlearning will be saved in the path ABL_results, and logs . Please carefully read the backdoor_unlearning.py and config.py, then change the parameters for your experiment.

Leader-board of training backdoor-free model on Poisoned dataset

  • Note: Here, we create a leader board for anti-backdoor learning that we want to encourage you to submit your results of training a backdoor-free model on a backdoored CIFAR-10 dataset under our defense setting.
  • Defense setting: We assume the backdoor adversary has pre-generated a set of backdoor examples and has successfully injected these examples into the training dataset. We also assume the defender has full control over the training process but has no prior knowledge of the proportion of backdoor examples in the given dataset. The defender’s goal is to train a model on the given dataset (clean or poisoned) that is as good as models trained on purely clean data.
  • We show our ABL results against BadNets in the table bellow as a competition reference, and we welcome you to submit your paper results to complement this table!

Update News: this result is updated in 2021/10/21

# Paper Venue Poisoning data Architecture Attack type ASR (Defense) CA (Defense)
1 ABL NeurIPS 2021 available WRN-16-1 BadNets 3.04 86.11
2
3
4
5
6
7
8

Source of Backdoor Attacks

Attacks

CL: Clean-label backdoor attacks

SIG: A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

Barni, M., Kallas, K., & Tondi, B. (2019). > A new Backdoor Attack in CNNs by training set corruption without label poisoning. > arXiv preprint arXiv:1902.11237 superimposed sinusoidal backdoor signal with default parameters """ alpha = 0.2 img = np.float32(img) pattern = np.zeros_like(img) m = pattern.shape[1] for i in range(img.shape[0]): for j in range(img.shape[1]): for k in range(img.shape[2]): pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m) img = alpha * np.uint32(img) + (1 - alpha) * pattern img = np.uint8(np.clip(img, 0, 255)) # if debug: # cv2.imshow('planted image', img) # cv2.waitKey() return img ">
## reference code
def plant_sin_trigger(img, delta=20, f=6, debug=False):
    """
    Implement paper:
    > Barni, M., Kallas, K., & Tondi, B. (2019).
    > A new Backdoor Attack in CNNs by training set corruption without label poisoning.
    > arXiv preprint arXiv:1902.11237
    superimposed sinusoidal backdoor signal with default parameters
    """
    alpha = 0.2
    img = np.float32(img)
    pattern = np.zeros_like(img)
    m = pattern.shape[1]
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            for k in range(img.shape[2]):
                pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m)

    img = alpha * np.uint32(img) + (1 - alpha) * pattern
    img = np.uint8(np.clip(img, 0, 255))

    #     if debug:
    #         cv2.imshow('planted image', img)
    #         cv2.waitKey()

    return img

Dynamic: Input-aware Dynamic Backdoor Attack

FC: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

DFST: Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification

LBA: Latent Backdoor Attacks on Deep Neural Networks

CBA: Composite Backdoor Attack for Deep Neural Network by Mixing Existing Benign Features

Feature space attack benchmark

Note: This repository is the official implementation of Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks.

Library

Note: TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning.

Backdoors 101 — is a PyTorch framework for state-of-the-art backdoor defenses and attacks on deep learning models.

poisoning Feature space attack benchmark A unified benchmark problem for data poisoning attacks

References

If you find this code is useful for your research, please cite our paper

@inproceedings{li2021anti,
  title={Anti-Backdoor Learning: Training Clean Models on Poisoned Data},
  author={Li, Yige and Lyu, Xixiang and Koren, Nodens and Lyu, Lingjuan and Li, Bo and Ma, Xingjun},
  booktitle={NeurIPS},
  year={2021}
}

Contacts

If you have any questions, leave a message below with GitHub.

Owner
Yige-Li
CV&DeepLearning&Security
Yige-Li
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022