Decision Transformer: A brand new Offline RL Pattern

Overview

DecisionTransformer_StepbyStep

Intro

Decision Transformer: A brand new Offline RL Pattern.

这是关于NeurIPS 2021 热门论文Decision Transformer的复现。

👍 原文地址: Decision Transformer: Reinforcement Learning via Sequence Modeling

👍 官方的Git仓库: decision-transformer(official)

Decision Transformer

Decision Transformer属于Offline RL,所谓Offline RL,即从次优数据中学习策略来分配Agent,即从固定、有限的经验中产生最大有效的行为。

👀️ Motivation

DT将RL看成一个序列建模问题(Sequence Modeling Problem ),不用传统RL方法,而使用网络直接输出动作进行决策。传统RL方法存在一些问题,比如估计未来Return过程中Bootstrapping过程会导致Overestimate; 马尔可夫假设;

DT借助了Transformer的强大表征能力和时序建模能力。

  • Decision Transformer的表现达到甚至超过了目前最好的基于dynamic programming的主流方法;
  • 在一些需要long-term credit assignment的task【例如sparse reward或者delayed reward等】,Decision Transformer的表现远超过了最好的主流方法.

🚀️ DT的核心思想

image.png

Decision Transformer的核心思想; States、Actions、Returns被Fed into Modality-Specific的线性Embedding;并添加了带有时间步信息的positional episodic timestep; 这些Tokens被输入一个GPT架构,使用a causal self-attention mask来预测actions。

🎉️ DT的优势

  1. 无需Markov假设;
  2. 没有使用一个可学习的Value Function作为Training Target;
  3. 利用Transformer的特性,绕过长期信用分配进行“自举bootstrapping”的需要,避免了时序差分学习的“短视”行为;
  4. 可以通过self-attention直接执行信度分配。这与缓慢传播奖励并容易产生干扰信号的 Bellman Backup 相反,可以使 Transformer 在奖励稀少或分散注意力的情况下仍然有效地工作.

Dependencies

1. D4RL ( Dataset for Deep Data-Driven Reinforcement Learning )

2. MUJOCO 210

# 安装之前先安装absl-py和matplotlib 
pip install absl-py 
pip install matplotlib 

"""
git clone https://github.com/rail-berkeley/d4rl.git
cd d4rl
pip install -e . # 这种方法不好使 !! 
"""

#首先在https://github.com/deepmind/dm_control这个库git clone
# cd
pip install -r requirement.txt 
# 然后 
pip install matplotlib 
# 然后 https://github.com/takuseno/d3rlpy 
pip install d3rlpy 
# 然后安装mujoco 210  
# 直接安装,然后添加环境变量 
# 装完之后进d4rl文件夹下
python setup.py install 
# 成功安装 d4rl 1.1 

3. GPT-2


pip install transformers

Experiments

Group1: Decision Transformer — Hopper-v3-Medium-Dataset

参数Config

class Config:
    env = "hopper"
    dataset = "medium"
    mode = "normal" # "delayed" : all rewards moved to end of trajectory
    device = 'cuda'
    log_dir = 'TB_log/'
    record_algo = 'DT_Hopper_v1'
    test_cycles = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')

    # 模型
    model_type = "DT"
    activation_function = 'relu'

    # Scalar
    max_length = 20 # max_len # K
    pct_traj = 1.
    batch_size = 64
    embed_dim = 128
    n_layer = 3
    n_head = 1
    dropout = 0.1
    lr = 1e-4
    wd = 1e-4
    warmup_steps = 1000
    num_eval_episodes = 100
    max_iters = 50
    num_steps_per_iter = 1000

    # Bool
    log_to_tb = True

效果

image.png

Owner
Irving
Irving
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023