Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Overview

Inter-Prototype (BMVC 2021): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Improving Face Recognition with Large Age Gaps by Learning to Distinguish Children
Jungsoo Lee* (KAIST AI), Jooyeol Yun* (KAIST AI), Sunghyun Park (KAIST AI),
Yonggyu Kim (Korea Univ.), and Jaegul Choo (KAIST AI) (*: equal contribution)
BMVC 2021

Paper: Arxiv

Abstract: Despite the unprecedented improvement of face recognition, existing face recognition models still show considerably low performances in determining whether a pair of child and adult images belong to the same identity. Previous approaches mainly focused on increasing the similarity between child and adult images of a given identity to overcome the discrepancy of facial appearances due to aging. However, we observe that reducing the similarity between child images of different identities is crucial for learning distinct features among children and thus improving face recognition performance in child-adult pairs. Based on this intuition, we propose a novel loss function called the Inter-Prototype loss which minimizes the similarity between child images. Unlike the previous studies, the Inter-Prototype loss does not require additional child images or training additional learnable parameters. Our extensive experiments and in-depth analyses show that our approach outperforms existing baselines in face recognition with child-adult pairs.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI)
Jooyeol Yun [LinkedIn] [Google Scholar] (KAIST AI)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/leebebeto/Inter-Prototype.git
cd Inter-Prototype
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python3 train.py --data_mode=casia --exp=interproto_casia --wandb --tensorboard

How to Run

We used two different training datasets: 1) CASIA WebFace and 2) MS1M.

We constructed test sets with child-adult pairs with at least 20 years and 30 years age gaps using AgeDB and FG-NET, termed as AgeDB-C20, AgeDB-C30, FGNET-C20, and FGNET-C30. We also used LAG (Large Age Gap) dataset for the test set. For the age labels, we used the age annotations from MTLFace. The age annotations are available at this link. We provide a script file for downloading the test dataset.

sh scripts/download_test_data.sh

The final structure before training or testing the model should look like this.

train
 └ casia
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ ms1m
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ age-label
   └ casia-webface.txt
   └ ms1m.txt    
test
 └ AgeDB-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...
 └ FGNET-aligned
   └ image1.jpg
   └ image2.jpg
   └ ...
 └ LAG-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...

Pretrained Models

All models trained for our paper

Following are the checkpoints of each test set used in our paper.

Trained with Casia WebFace

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

Trained with MS1M

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

CUDA_VISIBLE_DEVICES=0 python3 evaluate.py --model_dir=<test_dir>

Quantitative / Qualitative Evaluation

Trained with CASIA WebFace dataset

Trained with MS1M dataset

t-SNE embedding of prototype vectors

Acknowledgments

Our pytorch implementation is heavily derived from InsightFace_Pytorch. Thanks for the implementation. We also deeply appreciate the age annotations provided by Huang et al. in MTLFace.

Owner
Jungsoo Lee
I'm interested in the intersection of Computer Vision and HCI.
Jungsoo Lee
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021