Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Overview

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

We propose Disentangled Audio-Visual System (DAVS) to address arbitrary-subject talking face generation in this work, which aims to synthesize a sequence of face images that correspond to given speech semantics, conditioning on either an unconstrained speech audio or video.

[Project] [Paper] [Demo]

Recommondation of our CVPR21 repo

This repo is barely maintaining since the version of this code is out of date. If you are interested in the topic of Talking Face Generation, feel free to try the CODE of our CVPR2021 PAPER!

Requirements

Generating test results

Create the default folder "checkpoints" and put the checkpoint in it or get the CHECKPOINT_PATH
  • Samples for testing can be found in this folder named 0572_0019_0003. This is a pre-processed sample from the Voxceleb Dataset.

  • Run the testing script to generate videos from video:

python test_all.py  --test_root ./0572_0019_0003/video --test_type video --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH
  • Run the testing script to generate videos from audio:
python test_all.py  --test_root ./0572_0019_0003/audio --test_type audio --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH

Sample Results

  • Talking Effect on Human Characters

  • Talking Effect on Non-human Characters (Trained on Human Faces Only)

Create more samples

  • The face detection tool used in the demo videos can be found at RSA. It will return a Matfile with 5 key point locations in a row for each image. Other face alignment methods are also appliable such as dlib. The key points for face alignement we used are the two for the center of the eyes and the average point of the corners of the mouth. With each image's PATH and the face POINTS, you can find our way of face alignment at preprocess/face_align.py.

  • Our preprocessing of the audio files is the same and borrowed from the matlab code of SyncNet. Then we save the mfcc features into bin files.

Preparing Training Data

  • We used the LRW dataset for training.
  • The directories are arranged like this:
data
├── train, val, test
|	├── 0, 1, 2 ... 499 (one folder for each class)
|	│   ├── 0, 1, 2 ... #videos per class
|	│   │   ├── align_face256
|	│   │   |   ├── 0, 1, ... 28.jpg
|	│   |   ├── mfcc20
|	│   │   |   ├── 2, 3 ... 26.bin

where each video is extracted to frames and aligned using our protocol, and each audio is processed and saved using Matlab.

Training

python train.py
  • This is still a beta version of the training code which only disentangles wid information from pid space. Running the train.py only might not be able to fully reproduce the paper. However, it can be served as a reference for how we implement the whole training process.
  • During our own implementation, the classification part (without generation and disentanglement) is pretrained first. The pretraining training code is temporarily not provided.

Postprocessing Details (Optional)

  • The directly generated results may suffer from a "zoom-in-and-out" condition which we assume is caused by our alignment of the training set. We solve the unstable problem using Subspace Video Stabilization in the demos.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{zhou2019talking,
  title     = {Talking Face Generation by Adversarially Disentangled Audio-Visual Representation},
  author    = {Zhou, Hang and Liu, Yu and Liu, Ziwei and Luo, Ping and Wang, Xiaogang},
  booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
  year      = {2019},
}

Acknowledgement

The structure of this codebase is borrowed from pix2pix.

Owner
Hang_Zhou
Ph.D. @ MMLab-CUHK
Hang_Zhou
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022