Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Overview

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

We propose Disentangled Audio-Visual System (DAVS) to address arbitrary-subject talking face generation in this work, which aims to synthesize a sequence of face images that correspond to given speech semantics, conditioning on either an unconstrained speech audio or video.

[Project] [Paper] [Demo]

Recommondation of our CVPR21 repo

This repo is barely maintaining since the version of this code is out of date. If you are interested in the topic of Talking Face Generation, feel free to try the CODE of our CVPR2021 PAPER!

Requirements

Generating test results

Create the default folder "checkpoints" and put the checkpoint in it or get the CHECKPOINT_PATH
  • Samples for testing can be found in this folder named 0572_0019_0003. This is a pre-processed sample from the Voxceleb Dataset.

  • Run the testing script to generate videos from video:

python test_all.py  --test_root ./0572_0019_0003/video --test_type video --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH
  • Run the testing script to generate videos from audio:
python test_all.py  --test_root ./0572_0019_0003/audio --test_type audio --test_audio_video_length 99 --test_resume_path CHECKPOINT_PATH

Sample Results

  • Talking Effect on Human Characters

  • Talking Effect on Non-human Characters (Trained on Human Faces Only)

Create more samples

  • The face detection tool used in the demo videos can be found at RSA. It will return a Matfile with 5 key point locations in a row for each image. Other face alignment methods are also appliable such as dlib. The key points for face alignement we used are the two for the center of the eyes and the average point of the corners of the mouth. With each image's PATH and the face POINTS, you can find our way of face alignment at preprocess/face_align.py.

  • Our preprocessing of the audio files is the same and borrowed from the matlab code of SyncNet. Then we save the mfcc features into bin files.

Preparing Training Data

  • We used the LRW dataset for training.
  • The directories are arranged like this:
data
├── train, val, test
|	├── 0, 1, 2 ... 499 (one folder for each class)
|	│   ├── 0, 1, 2 ... #videos per class
|	│   │   ├── align_face256
|	│   │   |   ├── 0, 1, ... 28.jpg
|	│   |   ├── mfcc20
|	│   │   |   ├── 2, 3 ... 26.bin

where each video is extracted to frames and aligned using our protocol, and each audio is processed and saved using Matlab.

Training

python train.py
  • This is still a beta version of the training code which only disentangles wid information from pid space. Running the train.py only might not be able to fully reproduce the paper. However, it can be served as a reference for how we implement the whole training process.
  • During our own implementation, the classification part (without generation and disentanglement) is pretrained first. The pretraining training code is temporarily not provided.

Postprocessing Details (Optional)

  • The directly generated results may suffer from a "zoom-in-and-out" condition which we assume is caused by our alignment of the training set. We solve the unstable problem using Subspace Video Stabilization in the demos.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{zhou2019talking,
  title     = {Talking Face Generation by Adversarially Disentangled Audio-Visual Representation},
  author    = {Zhou, Hang and Liu, Yu and Liu, Ziwei and Luo, Ping and Wang, Xiaogang},
  booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
  year      = {2019},
}

Acknowledgement

The structure of this codebase is borrowed from pix2pix.

Owner
Hang_Zhou
Ph.D. @ MMLab-CUHK
Hang_Zhou
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023