PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

Overview

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition CVPR 2018, Salt Lake City, USA

Mikaela Angelina Uy and Gim Hee Lee

National University of Singapore

pic-network

Introduction

The PointNetVLAD is a deep network that addresses the problem of large-scale place recognition through point cloud based retrieval. The arXiv version of PointNetVLAD can be found here.

@inproceedings{uy2018pointnetvlad,
      title={PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition},
      author={Uy, Mikaela Angelina and Lee, Gim Hee},
      booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
      year={2018}
}

Benchmark Datasets

The benchmark datasets introdruced in this work can be downloaded here.

  • All submaps are in binary file format
  • Ground truth GPS coordinate of the submaps are found in the corresponding csv files for each run
  • Filename of the submaps are their timestamps which is consistent with the timestamps in the csv files
  • Use CSV files to define positive and negative point clouds
  • All submaps are preprocessed with the road removed and downsampled to 4096 points

Oxford Dataset

  • 45 sets in total of full and partial runs
  • Used both full and partial runs for training but only used full runs for testing/inference
  • Training submaps are found in the folder "pointcloud_20m_10overlap/" and its corresponding csv file is "pointcloud_locations_20m_10overlap.csv"
  • Training submaps are not mutually disjoint per run
  • Each training submap ~20m of car trajectory and subsequent submaps are ~10m apart
  • Test/Inference submaps found in the folder "pointcloud_20m/" and its corresponding csv file is "pointcloud_locations_20m.csv"
  • Test/Inference submaps are mutually disjoint

NUS (Inhouse) Datasets

  • Each inhouse dataset has 5 runs
  • Training submaps are found in the folder "pointcloud_25m_10/" and its corresponding csv file is "pointcloud_centroids_10.csv"
  • Test/Infenrence submaps are found in the folder "pointcloud_25m_25/" and its corresponding csv file is "pointcloud_centroids_25.csv"
  • Training submaps are not mutually disjoint per run but test submaps are

Project Code

Pre-requisites

  • Python
  • CUDA
  • Tensorflow
  • Scipy
  • Pandas
  • Sklearn

Code was tested using Python 3 on Tensorflow 1.4.0 with CUDA 8.0

sudo apt-get install python3-pip python3-dev python-virtualenv
virtualenv --system-site-packages -p python3 ~/tensorflow
source ~/tensorflow/bin/activate
easy_install -U pip
pip3 install --upgrade tensorflow-gpu==1.4.0
pip install scipy, pandas, sklearn

Dataset set-up

Download the zip file of the benchmark datasets found here. Extract the folder on the same directory as the project code. Thus, on that directory you must have two folders: 1) benchmark_datasets/ and 2) pointnetvlad/

Generate pickle files

We store the positive and negative point clouds to each anchor on pickle files that are used in our training and evaluation codes. The files only need to be generated once. The generation of these files may take a few minutes.

cd generating_queries/ 

# For training tuples in our baseline network
python generate_training_tuples_baseline.py

# For training tuples in our refined network
python generate_training_tuples_refine.py

# For network evaluation
python generate_test_sets.py

Model Training and Evaluation

To train our network, run the following command:

python train_pointnetvlad.py

To evaluate the model, run the following command:

python evaluate.py

Pre-trained Models

The pre-trained models for both the baseline and refined networks can be downloaded here

Submap generation

Added the rough MATLAB code that was used for submap generation upon requests. Some functions are gotten from the toolbox of Oxford Robotcar.

Some clarification: The voxel grid filter was used to downsample the cloud to 4096, which was done by selecting a leaf size that initially downsamples the cloud close to 4096 points, after which we randomly add points to make the cloud have exactly 4096 points. Please feel free to send me an email ([email protected]) for any further questions.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Mikaela Uy
CS PhD Student
Mikaela Uy
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Bytedance Inc. 2.5k Jan 06, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023