The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

Related tags

Deep LearningEMANet
Overview

EMANet

News

  • The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again.
  • EMANet-101 gets 80.99 on the PASCAL VOC dataset (Thanks for Sensetimes' server). So, with a classic backbone(ResNet) instead of some newest ones(WideResNet, HRNet), EMANet still achieves the top performance.
  • EMANet-101 (OHEM) gets 81.14 in mIoU on Cityscapes val using single-scale inference, and 81.9 on test server with multi-scale inference.

Background

This repository is for Expectation-Maximization Attention Networks for Semantic Segmentation (to appear in ICCV 2019, Oral presentation),

by Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin and Hong Liu from Peking University.

The source code is now available!

citation

If you find EMANet useful in your research, please consider citing:

@inproceedings{li19,
    author={Xia Li and Zhisheng Zhong and Jianlong Wu and Yibo Yang and Zhouchen Lin and Hong Liu},
    title={Expectation-Maximization Attention Networks for Semantic Segmentation},
    booktitle={International Conference on Computer Vision},   
    year={2019},   
}

table of contents

Introduction

Self-attention mechanism has been widely used for various tasks. It is designed to compute the representation of each position by a weighted sum of the features at all positions. Thus, it can capture long-range relations for computer vision tasks. However, it is computationally consuming. Since the attention maps are computed w.r.t all other positions. In this paper, we formulate the attention mechanism into an expectation-maximization manner and iteratively estimate a much more compact set of bases upon which the attention maps are computed. By a weighted summation upon these bases, the resulting representation is low-rank and deprecates noisy information from the input. The proposed Expectation-Maximization Attention (EMA) module is robust to the variance of input and is also friendly in memory and computation. Moreover, we set up the bases maintenance and normalization methods to stabilize its training procedure. We conduct extensive experiments on popular semantic segmentation benchmarks including PASCAL VOC, PASCAL Context, and COCO Stuff, on which we set new records. EMA Unit

Design

As so many peers have starred at this repo, I feel the great pressure, and try to release the code with high quality. That's why I didn't release it until today (Aug, 22, 2018). It's known that the design of the code structure is not an easy thing. Different designs are suitable for different usage. Here, I aim at making research on Semantic Segmentation, especially on PASCAL VOC, more easier. So, I delete necessary encapsulation as much as possible, and leave over less than 10 python files. To be honest, the global variables in settings are not a good design for large project. But for research, it offers great flexibility. So, hope you can understand that

For research, I recommand seperatting each experiment with a folder. Each folder contains the whole project, and should be named as the experiment settings, such as 'EMANet101.moving_avg.l2norm.3stages'. Through this, you can keep tracks of all the experiments, and find their differences just by the 'diff' command.

Usage

  1. Install the libraries listed in the 'requirements.txt'
  2. Downloads images and labels of PASCAL VOC and SBD, decompress them together.
  3. Downloads the pretrained ResNet50 and ResNet101, unzip them, and put into the 'models' folder.
  4. Change the 'DATA_ROOT' in settings.py to where you place the dataset.
  5. Run sh clean.sh to clear the models and logs from the last experiment.
  6. Run python train.py for training and sh tensorboard.sh for visualization on your browser.
  7. Or you can download the pretraind model, put into the 'models' folder, and skip step 6.
  8. Run python eval.py for validation

Ablation Studies

The following results are referred from the paper. For this repo, it's not strange to get even higer performance. If so, I'd like you share it in the issue. By now, this repo only provides the SS inference. I may release the code for MS and Flip latter.

Tab 1. Detailed comparisons with Deeplabs. All results are achieved with the backbone ResNet-101 and output stride 8. The FLOPs and memory are computed with the input size 513×513. SS: Single scale input during test. MS: Multi-scale input. Flip: Adding left-right flipped input. EMANet (256) and EMANet (512) represent EMANet withthe number of input channels for EMA as 256 and 512, respectively.

Method SS MS+Flip FLOPs Memory Params
ResNet-101 - - 190.6G 2.603G 42.6M
DeeplabV3 78.51 79.77 +63.4G +66.0M +15.5M
DeeplabV3+ 79.35 80.57 +84.1G +99.3M +16.3M
PSANet 78.51 79.77 +56.3G +59.4M +18.5M
EMANet(256) 79.73 80.94 +21.1G +12.3M +4.87M
EMANet(512) 80.05 81.32 +43.1G +22.1M +10.0M

To be note, the majority overheads of EMANets come from the 3x3 convs before and after the EMA Module. As for the EMA Module itself, its computation is only 1/3 of a 3x3 conv's, and its parameter number is even smaller than a 1x1 conv.

Comparisons with SOTAs

Note that, for validation on the 'val' set, you just have to train 30k on the 'trainaug' set. But for test on the evaluation server, you should first pretrain on COCO, and then 30k on 'trainaug', and another 30k on the 'trainval' set.

Tab 2. Comparisons on the PASCAL VOC test dataset.

Method Backbone mIoU(%)
GCN ResNet-152 83.6
RefineNet ResNet-152 84.2
Wide ResNet WideResNet-38 84.9
PSPNet ResNet-101 85.4
DeeplabV3 ResNet-101 85.7
PSANet ResNet-101 85.7
EncNet ResNet-101 85.9
DFN ResNet-101 86.2
Exfuse ResNet-101 86.2
IDW-CNN ResNet-101 86.3
SDN DenseNet-161 86.6
DIS ResNet-101 86.8
EMANet101 ResNet-101 87.7
DeeplabV3+ Xception-65 87.8
Exfuse ResNeXt-131 87.9
MSCI ResNet-152 88.0
EMANet152 ResNet-152 88.2

Code Borrowed From

RESCAN

Pytorch-Encoding

Synchronized-BN

Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022