The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

Related tags

Deep LearningEMANet
Overview

EMANet

News

  • The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again.
  • EMANet-101 gets 80.99 on the PASCAL VOC dataset (Thanks for Sensetimes' server). So, with a classic backbone(ResNet) instead of some newest ones(WideResNet, HRNet), EMANet still achieves the top performance.
  • EMANet-101 (OHEM) gets 81.14 in mIoU on Cityscapes val using single-scale inference, and 81.9 on test server with multi-scale inference.

Background

This repository is for Expectation-Maximization Attention Networks for Semantic Segmentation (to appear in ICCV 2019, Oral presentation),

by Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen Lin and Hong Liu from Peking University.

The source code is now available!

citation

If you find EMANet useful in your research, please consider citing:

@inproceedings{li19,
    author={Xia Li and Zhisheng Zhong and Jianlong Wu and Yibo Yang and Zhouchen Lin and Hong Liu},
    title={Expectation-Maximization Attention Networks for Semantic Segmentation},
    booktitle={International Conference on Computer Vision},   
    year={2019},   
}

table of contents

Introduction

Self-attention mechanism has been widely used for various tasks. It is designed to compute the representation of each position by a weighted sum of the features at all positions. Thus, it can capture long-range relations for computer vision tasks. However, it is computationally consuming. Since the attention maps are computed w.r.t all other positions. In this paper, we formulate the attention mechanism into an expectation-maximization manner and iteratively estimate a much more compact set of bases upon which the attention maps are computed. By a weighted summation upon these bases, the resulting representation is low-rank and deprecates noisy information from the input. The proposed Expectation-Maximization Attention (EMA) module is robust to the variance of input and is also friendly in memory and computation. Moreover, we set up the bases maintenance and normalization methods to stabilize its training procedure. We conduct extensive experiments on popular semantic segmentation benchmarks including PASCAL VOC, PASCAL Context, and COCO Stuff, on which we set new records. EMA Unit

Design

As so many peers have starred at this repo, I feel the great pressure, and try to release the code with high quality. That's why I didn't release it until today (Aug, 22, 2018). It's known that the design of the code structure is not an easy thing. Different designs are suitable for different usage. Here, I aim at making research on Semantic Segmentation, especially on PASCAL VOC, more easier. So, I delete necessary encapsulation as much as possible, and leave over less than 10 python files. To be honest, the global variables in settings are not a good design for large project. But for research, it offers great flexibility. So, hope you can understand that

For research, I recommand seperatting each experiment with a folder. Each folder contains the whole project, and should be named as the experiment settings, such as 'EMANet101.moving_avg.l2norm.3stages'. Through this, you can keep tracks of all the experiments, and find their differences just by the 'diff' command.

Usage

  1. Install the libraries listed in the 'requirements.txt'
  2. Downloads images and labels of PASCAL VOC and SBD, decompress them together.
  3. Downloads the pretrained ResNet50 and ResNet101, unzip them, and put into the 'models' folder.
  4. Change the 'DATA_ROOT' in settings.py to where you place the dataset.
  5. Run sh clean.sh to clear the models and logs from the last experiment.
  6. Run python train.py for training and sh tensorboard.sh for visualization on your browser.
  7. Or you can download the pretraind model, put into the 'models' folder, and skip step 6.
  8. Run python eval.py for validation

Ablation Studies

The following results are referred from the paper. For this repo, it's not strange to get even higer performance. If so, I'd like you share it in the issue. By now, this repo only provides the SS inference. I may release the code for MS and Flip latter.

Tab 1. Detailed comparisons with Deeplabs. All results are achieved with the backbone ResNet-101 and output stride 8. The FLOPs and memory are computed with the input size 513×513. SS: Single scale input during test. MS: Multi-scale input. Flip: Adding left-right flipped input. EMANet (256) and EMANet (512) represent EMANet withthe number of input channels for EMA as 256 and 512, respectively.

Method SS MS+Flip FLOPs Memory Params
ResNet-101 - - 190.6G 2.603G 42.6M
DeeplabV3 78.51 79.77 +63.4G +66.0M +15.5M
DeeplabV3+ 79.35 80.57 +84.1G +99.3M +16.3M
PSANet 78.51 79.77 +56.3G +59.4M +18.5M
EMANet(256) 79.73 80.94 +21.1G +12.3M +4.87M
EMANet(512) 80.05 81.32 +43.1G +22.1M +10.0M

To be note, the majority overheads of EMANets come from the 3x3 convs before and after the EMA Module. As for the EMA Module itself, its computation is only 1/3 of a 3x3 conv's, and its parameter number is even smaller than a 1x1 conv.

Comparisons with SOTAs

Note that, for validation on the 'val' set, you just have to train 30k on the 'trainaug' set. But for test on the evaluation server, you should first pretrain on COCO, and then 30k on 'trainaug', and another 30k on the 'trainval' set.

Tab 2. Comparisons on the PASCAL VOC test dataset.

Method Backbone mIoU(%)
GCN ResNet-152 83.6
RefineNet ResNet-152 84.2
Wide ResNet WideResNet-38 84.9
PSPNet ResNet-101 85.4
DeeplabV3 ResNet-101 85.7
PSANet ResNet-101 85.7
EncNet ResNet-101 85.9
DFN ResNet-101 86.2
Exfuse ResNet-101 86.2
IDW-CNN ResNet-101 86.3
SDN DenseNet-161 86.6
DIS ResNet-101 86.8
EMANet101 ResNet-101 87.7
DeeplabV3+ Xception-65 87.8
Exfuse ResNeXt-131 87.9
MSCI ResNet-152 88.0
EMANet152 ResNet-152 88.2

Code Borrowed From

RESCAN

Pytorch-Encoding

Synchronized-BN

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022