Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Overview

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

In this work, we propose an algorithm DP-SCAFFOLD(-warm), which is a new version of the so-called SCAFFOLD algorithm ( warm version : wise initialisation of parameters), to tackle heterogeneity issues under mathematical privacy constraints known as Differential Privacy (DP) in a federated learning framework. Using fine results of DP theory, we have succeeded in establishing both privacy and utility guarantees, which show the superiority of DP-SCAFFOLD over the naive algorithm DP-FedAvg. We here provide numerical experiments that confirm our analysis and prove the significance of gains of DP-SCAFFOLD especially when the number of local updates or the level of heterogeneity between users grows.

Two datasets are studied:

  • a real-world dataset called Femnist (an extended version of EMNIST dataset for federated learning), which you see the Accuracy growing with the number of communication rounds (50 local updates first and then 100 local updates)

image_femnist image_femnist

  • synthetic data called Logistic for logistic regression models, which you see the train loss decreasing with the number of communication rounds (50 local updates first and then 100 local updates),

image_logistic image_logistic

Significant results are available for both of these datasets for logistic regression models.

Structure of the code

  • main.py: four global options are available.
    • generate: to generate data, introduce heterogeneity, split data between users for federated learning and preprocess data
    • optimum (after generate): to run a phase training with unsplitted data and save the "best" empirical model in a centralized setting to properly compare rates of convergence
    • simulation (after generate and optimum): to run several simulations of federated learning and save the results (accuracy, loss...)
    • plot (after simulation): to plot visuals

./data

Contains generators of synthetic (Logistic) and real-world (Femnist) data ( file data_generator.py), designed for a federated learning framework under some similarity parameter. Each folder contains a file data where the generated data (train and test) is stored.

./flearn

  • differential_privacy : contains code to apply Gaussian mechanism (designed to add differential privacy to mini-batch stochastic gradients)
  • optimizers : contains the optimization framework for each algorithm (adaptation of stochastic gradient descent)
  • servers : contains the super class Server (in server_base.py) which is adapted to FedAvg and SCAFFOLD (algorithm from the point of view of the server)
  • trainmodel : contains the learning model structures
  • users : contains the super class User (in user_base.py) which is adapted to FedAvg and SCAFFOLD ( algorithm from the point of view of any user)

./models

Stores the latest models over the training phase of federated learning.

./results

Stores several metrics of convergence for each simulation, each similarity/privacy setting and each algorithm.

Metrics (evaluated at each round of communication):

  • test accuracy over all users,
  • train loss over all users,
  • highest norm of parameter difference (server/user) over all selected users,
  • train gradient dissimilarity over all users.

Software requirements:

  • To download the dependencies: pip install -r requirements.txt

References

Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022