Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Overview

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

In this work, we propose an algorithm DP-SCAFFOLD(-warm), which is a new version of the so-called SCAFFOLD algorithm ( warm version : wise initialisation of parameters), to tackle heterogeneity issues under mathematical privacy constraints known as Differential Privacy (DP) in a federated learning framework. Using fine results of DP theory, we have succeeded in establishing both privacy and utility guarantees, which show the superiority of DP-SCAFFOLD over the naive algorithm DP-FedAvg. We here provide numerical experiments that confirm our analysis and prove the significance of gains of DP-SCAFFOLD especially when the number of local updates or the level of heterogeneity between users grows.

Two datasets are studied:

  • a real-world dataset called Femnist (an extended version of EMNIST dataset for federated learning), which you see the Accuracy growing with the number of communication rounds (50 local updates first and then 100 local updates)

image_femnist image_femnist

  • synthetic data called Logistic for logistic regression models, which you see the train loss decreasing with the number of communication rounds (50 local updates first and then 100 local updates),

image_logistic image_logistic

Significant results are available for both of these datasets for logistic regression models.

Structure of the code

  • main.py: four global options are available.
    • generate: to generate data, introduce heterogeneity, split data between users for federated learning and preprocess data
    • optimum (after generate): to run a phase training with unsplitted data and save the "best" empirical model in a centralized setting to properly compare rates of convergence
    • simulation (after generate and optimum): to run several simulations of federated learning and save the results (accuracy, loss...)
    • plot (after simulation): to plot visuals

./data

Contains generators of synthetic (Logistic) and real-world (Femnist) data ( file data_generator.py), designed for a federated learning framework under some similarity parameter. Each folder contains a file data where the generated data (train and test) is stored.

./flearn

  • differential_privacy : contains code to apply Gaussian mechanism (designed to add differential privacy to mini-batch stochastic gradients)
  • optimizers : contains the optimization framework for each algorithm (adaptation of stochastic gradient descent)
  • servers : contains the super class Server (in server_base.py) which is adapted to FedAvg and SCAFFOLD (algorithm from the point of view of the server)
  • trainmodel : contains the learning model structures
  • users : contains the super class User (in user_base.py) which is adapted to FedAvg and SCAFFOLD ( algorithm from the point of view of any user)

./models

Stores the latest models over the training phase of federated learning.

./results

Stores several metrics of convergence for each simulation, each similarity/privacy setting and each algorithm.

Metrics (evaluated at each round of communication):

  • test accuracy over all users,
  • train loss over all users,
  • highest norm of parameter difference (server/user) over all selected users,
  • train gradient dissimilarity over all users.

Software requirements:

  • To download the dependencies: pip install -r requirements.txt

References

This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022