Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Overview

Plant Pathology 2020 FGVC7

Introduction

A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant Pathology 2020, utilising:

  • PyTorch: A Deep Learning Framework for high-performance AI research
  • Weights and Biases: tool for experiment tracking, dataset versioning, and model management
  • Apex: A Library to Accelerate Deep Learning Training using AMP, Fused Optimizer, and Multi-GPU
  • TensorRT: high-performance neural network inference optimizer and runtime engine for production deployment
  • Triton Inference Server: inference serving software that simplifies the deployment of AI models at scale
  • Streamlit: framework to quickly build highly interactive web applications for machine learning models

For a quick tutorial about all these modules, check out tutorials folder. Exploratory data analysis for the same can also be found in the notebooks folder.

Structure

├── app                 # Interactive Streamlit app scripts
├── data                # Datasets
├── examples            # assignment on pytorch amp and ddp
├── model               # Directory to save models for triton
├── notebooks           # EDA, Training, Model conversion, Inferencing and other utility notebooks
├── tutorials           # Tutorials on the modules used
└── requirements.txt    # Basic requirements

Usage

EDA: Data Evaluation

Data can be explored with various visualization techniques provided in eda.ipyb notebooks folder

Training the model

To run the pytorch resnet50 model use pytorch_train.ipynb.

The code is inspired by Pytorch Performance Tuning Guide

Once the model is trained, you can even run model explainabilty using the shap library. The tutorial notebook for the same can be found in the notebooks folder.

Model Conversion and Inferencing

Once you've trained the model, you will need to convert it to different formats in order to have a faster inference time as well as easily deploy them. You can convert the model to ONNX, TensorRT FP32 and TensorRT FP16 formats which are optimised to run faster inference. You will also need to convert the PyTorch model to TorchScript. Procedure for converting and benchmarking all the different formats of the model can be found in notebooks folder.

Model Deployment and Benchmarking

Now your models are ready to be deployed. For deployment, we utilise the Triton Inference Server. It provides an inferencing solution for deep learning models to be easily deployed and integrated with various functionalities. It supports HTTP and gRPC protocol that allows clients to request for inferencing, utilising any model of choice being managed by the server. The process of deployment can be found in Triton Inference Server.md.

Once your inferencing server is up and running, the next step it to understand as well as optimise the model performance. For this purpose, you can utilise tools like perf_analyzer which helps you measure changes in performance as you experiment with different parameters.

Interactive Web App

To run the Streamlit app:

cd app/
streamlit app.py

This will create a local server on which you can view the web application. This app contains the client side for the Triton Inference Server, along with an easy to use GUI.

Acknowledgement

This repository is built with references and code snippets from the NN Template by Luca Moschella.

Owner
Bharat Giddwani
B.Tech Graduate || Deep learning/ machine learning enthusiast. A passionate/avid learner.
Bharat Giddwani
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021