Sparse Physics-based and Interpretable Neural Networks

Related tags

Deep LearningSPINN
Overview

Sparse Physics-based and Interpretable Neural Networks for PDEs

This repository contains the code and manuscript for research done on Sparse Physics-based and Interpretable Neural Networks for PDEs. More details are available in the following publication:

  • Amuthan A. Ramabathiran and Prabhu Ramachandran^, "SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs", Journal of Computational Physics, Volume 445, pages 110600, 2021 doi:10.1016/j.jcp.2021.110600. (^ Joint first author). arXiv:2102.13037.

Installation

Running the code in this repository requires a few pre-requisites to be set up. The Python packages required are in the requirements.txt. Here are some instructions to help you set these up:

  1. Setup a suitable Python distribution, using conda or a virtualenv.

  2. Clone this repository:

    $ git clone https://github.com/nn4pde/SPINN.git
    $ cd SPINN
  1. If you use conda, run the following from your Python environment:
    $ conda env create -f environment.yml
    $ conda activate spinn
  1. If you use a virtualenv or some other Python distribution and wish to use pip:
    $ pip install -r requirements.txt

Once you install the packages you should hopefully be able to run the examples. The examples all support live-plotting of the results. Matplotlib is required for the live plotting of any of the 1D problems and Mayavi is needed for any 2D/3D problems. These are already specified in the requirements.txt and environments.yml files.

Running the code

All the problems discussed in the paper are available in the code subdirectory. The supplementary text in the paper discusses the design of the code at a very high level. You can run any of the problems as follows:

  $ cd code
  $ python ode3.py -h

And this will provide a variety of help options that you can use. You can see the results live by doing:

  $ python ode3.py --plot

These require matlplotlib.

The 2D problems also feature live plotting with Mayavi if it is installed, for example:

  $ python advection1d.py --plot

You should see the solution as well as the computational nodes. Where applicable you can see an exact solution as a wireframe.

If you have a GPU and it is configured to work with PyTorch, you can use it like so:

  $ python poisson2d_irreg_dom.py --gpu

Generating the results

All the results shown in the paper are automated using the automan package which should already be installed as part of the above installation. This will perform all the required simulations (this can take a while) and also generate all the plots for the manuscript.

To learn how to use the automation, do this:

    $ python automate.py -h

By default the simulation outputs are in the outputs directory and the final plots for the paper are in manuscript/figures.

To generate all the figures in one go, run the following (this will take a while):

    $ python automate.py

If you wish to only run a particular set of problems and see those results you can do the following:

   $ python automate.py PROBLEM

where PROBLEM can be any of the demonstrated problems. For example:

  $ python automate.py ode1 heat cavity

Will only run those three problems. Please see the help output (-h) and look at the code for more details.

By default we do not need to use a GPU for the automation but if you have one, you can edit the automate.py and set USE_GPU = True to make use of your GPU where possible.

Building the paper

Once you have generated all the figures from the automation you can easily compile the manuscript. The manuscript is written with LaTeX and if you have that installed you may do the following:

$ cd manuscript
$ latexmk spinn_manuscript.tex -pdf
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
LBK 20 Dec 02, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023