eXPeditious Data Transfer

Overview

xpdt: eXPeditious Data Transfer

PyPI version

About

xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing them. It aims to produce code with little or no overhead and is based on fixed-length representations which allows for zero-copy deserialization and (at-most-)one-copy writes (source to buffer).

The generated C code, in particular, is highly optimized and often permits the elimination of data-copying for writes and enables optimizations such as loop-unrolling for fixed-length objects. This can lead to read speeds in excess of 500 million objects per second (~1.8 nsec per object).

Examples

The xpdt source language looks similar to C struct definitions:

struct timestamp {
	u32	tv_sec;
	u32	tv_nsec;
};

struct point {
	i32	x;
	i32	y;
	i32	z;
};

struct line {
	timestamp	time;
	point		line_start;
	point		line_end;
	bytes		comment;
};

Fixed width integer types from 8 to 128 bit are supported, along with the bytes type, which is a variable-length sequence of bytes.

Target Languages

The following target languages are currently supported:

  • C
  • Python

The C code is very highly optimized.

The Python code is about as well optimized for CPython as I can make it. It uses typed NamedTuple for objects, which has some small overhead over regular tuples, and it uses struct.Struct to do the packing/unpacking. I have also code-golfed the generated bytecodes down to what I think is minimal given the design constraints. As a result, performance of the pure Python code is comparable to a JSON library implemented in C or Rust.

For better performance in Python, it may be desirable to develop a Cython target. In some instances CFFI structs may be more performant since they can avoid the creation/destruction of an object for each record.

Target languages are implemented purely as jinja2 templates.

Serialization format

The serialization format for fixed-length objects is simply a packed C struct.

For any object which contains bytes type fields:

  • a 32bit unsigned record length is prepended to the struct
  • all bytes type fields are converted to u32 and contain the length of the bytes
  • all bytes contents are appended after the struct in the order in which they appear

For example, following the example above, the serialization would be:

u32 tot_len # = 41
u32 time.tv_sec
u32 time.tv_usec
i32 line_start.x
i32 line_start.y
i32 line_start.z
i32 line_end.x
i32 line_end.y
i32 line_end.z
u32 comment # = 5
u8 'H'
u8 'e'
u8 'l'
u8 'l'
u8 'o'

Features

The feature-set is, as of now, pretty slim.

There are no array / sequence / map types, and no keyed unions.

Support for such things may be added in future provided that suitable implementations exist. An implementation is suitable if:

  • It admits a zero (or close to zero) overhead implementation
  • it causes no overhead when the feature isn't being used

License

The compiler is released under the GPLv3.

The C support code/headers are released under the MIT license.

The generated code is yours.

You might also like...
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

Instant Real-Time Example-Based Style Transfer to Facial Videos
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

An implementation of
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Releases(v0.0.5)
  • v0.0.5(Jan 6, 2022)

  • v0.0.4(Jan 6, 2022)

  • v0.0.3(Dec 21, 2021)

    First cut of multiplexed files support, where you can read/write structs of different types to and from the same file. A discriminator field and record length is prepended to each record.

    Fields whose names begin with underscore are now considered hidden/reserved fields. They can be use to add padding and force specific alignments.

    Improve the error messages in the tokenization stage.

    Numerous improvements to the C and python code. Added support for new types: bytearray, stringlist, intstack.

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Jun 27, 2021)

    A new string type was added, as well as the ability to add reserved/padding fields which are set to all zeroes.

    Some language-breaking changes were made: the "type" keyword changed to "struct" and the signed integer types were renamed to the more conventional "i8" ... "i64".

    Source code(tar.gz)
    Source code(zip)
Owner
Gianni Tedesco
Computer programming is fun.
Gianni Tedesco
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022