The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

Overview

IFood MLE Test

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

https://github.com/ifood/ifood-data-ml-engineer-test

Projeto: API para servir modelos com Flask, Gunicorn e Docker

Autor: George Rocha

Estrutura do projeto:

.
├── AutoML
│   └── AutoML_h2o.ipynb
├── AWS_infra
│   └── AWS Infrastructure.pdf
├── IFood_API
│   ├── docs
│   │   ├── Document Live.txt
│   │   └── Document Static.html
│   ├── flask_docker
│   │   ├── Dockerfile
│   │   ├── exec.py
│   │   ├── mls.py
│   │   ├── my_app.py
│   │   ├── path.json
│   │   ├── requirements.txt
│   │   ├── setup.py
│   │   └── wsgi.py
│   └── notebook
│       └── example.ipynb
└── READ.me

Installation

Dependencies, this application requires:

Python (>= 3.7)
Docker (= 20.10.12)

Please follow the link bellow for more information on docker:

https://docs.docker.com/engine/install/ubuntu/

Alteração da url de origem dos dados

Para alterar as origens e destinos dos arquivos salvos, favor alterar o arquivo path.json onde:

"modeldata": dados como informações salvas pelo AutoML, info, modelos, arquivos de teste,
"procdata": dados como dados pre processados que serão utilizados para treinar e validar o modelo

Abaixo segue um exemplo:

{	
"modeldata":"https://s3model.blob.core.windows.net/modeldata/",
"procdata":"https://s3model.blob.core.windows.net/prodata/"
}

Execução

No diretório /IFood_ML/IFood_API/flask_docker/ digite no terminal o seguinte comando:

python setup.py

A última linha mostrará a porta que o docker fez o bind com o host. Exemplo:

8000/tcp, :::49171->8000/tcp serene_matsumoto">
CONTAINER ID   IMAGE          COMMAND             CREATED         STATUS                  PORTS                                         NAMES
ac5bb0615e0a   flask_docker   "python3 exec.py"   2 seconds ago   Up Less than a second   0.0.0.0:49171->8000/tcp, :::49171->8000/tcp   serene_matsumoto

Documentation

https://app.swaggerhub.com/apis-docs/george53/MLS/1.0.0

AutoML

Executar o notebook IFood_AutoML_h2o no diretório AutoML para criar um modelo, tempo para criação de um minuto na configuração atual.


Exemplo:

Executar o notebook exemplo.ipynb IFood_ML/IFood_API/notebooks para enviar e receber os dados.

Get:

  pd.read_json(requests.get('http://0.0.0.0:49171/').content)

Post:

  r = requests.post('http://0.0.0.0:49171/', data=data).content
  
  prediction = pd.read_json(r)

Owner
George Rocha
George Rocha
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022