Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Related tags

Deep LearningRNW
Overview

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Kun Wang, Zhenyu Zhang, Zhiqiang Yan, Xiang Li, Baobei Xu, Jun Li and Jian Yang

PCA Lab, Nanjing University of Science and Technology; Tencent YouTu Lab; Hikvision Research Institute

Introduction

This is the official repository for Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark. You can find our paper at arxiv. In this repository, we release the training and testing code, as well as the data split files of RobotCar-Night and nuScenes-Night.

image-20211002220051137

Dependency

  • python>=3.6
  • torch>=1.7.1
  • torchvision>=0.8.2
  • mmcv>=1.3
  • pytorch-lightning>=1.4.5
  • opencv-python>=3.4
  • tqdm>=4.53

Dataset

The dataset used in our work is based on RobotCar and nuScenes. Please visit their official website to download the data (We only used a part of these datasets. If you just want to run the code, (2014-12-16-18-44-24, 2014-12-09-13-21-02) of RobotCar and (Package 01, 02, 05, 09, 10) of nuScenes is enough). To produce the ground truth depth, you can use the above official toolboxes. After preparing datasets, we strongly recommend you to organize the directory structure as follows. The split files are provided in split_files/.

RobotCar-Night root directory
|__Package name (e.g. 2014-12-16-18-44-24)
   |__depth (to store the .npy ground truth depth maps)
      |__ground truth depth files
   |__rgb (to store the .png color images)
      |__color image files
   |__intrinsic.npy (to store the camera intrinsics)
   |__test_split.txt (to store the test samples)
   |__train_split.txt (to store the train samples)
nuScenes-Night root directory
|__sequences (to store sequence data)
   |__video clip number (e.g. 00590cbfa24a430a8c274b51e1c71231)
      |__file_list.txt (to store the image file names in this video clip)
      |__intrinsic.npy (to store the camera intrinsic of this video clip)
      |__image files described in file_list.txt
|__splits (to store split files)
   |__split files with name (day/night)_(train/test)_split.txt
|__test
   |__color (to store color images for testing)
   |__gt (to store ground truth depth maps w.r.t color)

Note: You also need to configure the dataset path in datasets/common.py. The original resolution of nuScenes is too high, so we reduce its resolution to half when training.

Training

Our model is trained using Distributed Data Parallel supported by Pytorch-Lightning. You can train a RNW model on one dataset through the following two steps:

  1. Train a self-supervised model on daytime data, by

    python train.py mono2_(rc/ns)_day number_of_your_gpus
  2. Train RNW by

    python train.py rnw_(rc/ns) number_of_your_gpus

Since there is no eval split, checkpoints will be saved every two epochs.

Testing

You can run the following commands to test on RobotCar-Night

python test_robotcar_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_robotcar.py day/night

To test on nuScenes-Night, you can run

python test_nuscenes_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_nuscenes.py day/night

Besides, you can use the scripts batch_eval_robotcar.py and batch_eval_nuscenes.py to automatically execute the above commands.

Citation

If you find our work useful, please consider citing our paper

@InProceedings{Wang_2021_ICCV,
    author    = {Wang, Kun and Zhang, Zhenyu and Yan, Zhiqiang and Li, Xiang and Xu, Baobei and Li, Jun and Yang, Jian},
    title     = {Regularizing Nighttime Weirdness: Efficient Self-Supervised Monocular Depth Estimation in the Dark},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16055-16064}
}
Owner
kunwang
kunwang
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022